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e How HIC can probe
the EOS at
(actual/upgraded)
GANIL

e a suited modelling
environment
is ready and available

e building microscopic
observables
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o HICs affect the density landscape of a nuclear system,
from collective modes to disordered perturbations

= terrestrial laboratory probes for the nuclear EOS

transient topologies in finite systems
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e But, at variance from some astrophysical scenarios,
the HICs-EOS correlation is very indirect, because :
1) in early stages timescales are comparable with the relaxation time
of the nuclear interaction (~ 1072!s) =
= chaotic behaviour, bulk instabilities
2) when moving from NM to finite systems, surface adds up =
= non-trivial geometries, surface instabilities



e In nuclear processes, from nuclear reactions to compact stars,
chemical potentials {i,, i, determine how neutrons and protons flow
in the nuclear medium, according to the

form of the nuclear interaction.
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e Currents of neutrons and protons stream towards
their chemical-potential minima, driven by
density gradients (migration) or concentration gradients (diffusiorn)
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o Their difference — introduces the
symmetry energy and its derivative

migration
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o If the ultimate fate is the disassembly of the system in a
phase-transition-like process, the isospin content of the fragments is
additionally affected by the phase separation (distillation).

Cromaz,Coonna Raxorup Prys.Rer389 (2004) ; M, Serot PRC52 (1995) ‘



Deep inelastic :

incident energy goes into
collective modes and
deformations ruled by
surface-Coulomb energy
interplay

e.g.: Y Au+ Au at 15AMeV

Around Fermi energy :
incident energy goes into
two-body dissipation violent p
perturbations, isospin drifts,
bulk instabilities

e.g.: °Ar+%Niat 74AMeV,
86Kr+124Sn at 35AMeV
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Example : Thermal and density condition of fragments and clusters at the
rupture time of thread-like topologies in DI and Fermi-regime situations, in
correlation with the EOS
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[NapoLiTani2021 arXiv :2203.13736]




Goal :

Handling the interplay of
collective—dissipative modes
in one single extended theory
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e Heavy-ion collisions are non-equilibrium processes in large part
= microscopic modelling (no equilibrium assumption)

e Variances of single-nucleus properties and multiple-fragment production is
the result of nonlinearities, fluctuations and bifurcations
= precise description of stable and unstable conditions

small-amplitude beyond mean-field 1 large-amplitude e
2 fluctuations T T T =
kS 'cg bifurcations,
2 5 /\y non-linear regimes,
g = chaos,
instabilities
time time

e sampling of the dynamical process over its entire time span
(only standard sequential decay can be left over)
= keeping stability, self-consistency, Fermi statistics, Pauli



e Correlations beyond kinetic eq. approximately recovered

by handling several mean fields
— generated from the action of a fluctuating seed on the one-body density
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e Diffusion coeff. D from Langevin term —
— intermittent fluctuation revival and bifurcations

in the spirit of the Brownian motion
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A,B,C,D : extended equal-isospin phase-space portions of size=nucleon
imposed by the variance f(1 — f) in 1® cells at equilibrium
[ Napovirant,Coronna PLB726 2013; PRC96 2017

Mean field : suited for isovector/isoscalar transport
Collision term : fluctuations inducing fragment and cluster separation

— we can apply BLOB to fragment phenomenology in HIC



e nuclear interaction leads to clusterisation below saturation density
and in unstable EOS sites (negative incompressibility x™* < 0).
— dispersion relation for volume-unstable modes k

nuclear matter
T=3MeV, p°=0.053fm™!
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e k-distribution presents UV cutoff

as a function of the interaction range

=  disturbance k amplified with growth rate I', = 1/

e leading k — most probable spinodal wavelength around 8fm at ;30 /3 i
e possible interference : larger k recombine into smaller k

Napovimant,Coroxna PRC96 (2017)] "



e most probable spinodal fragment size corresponds to the leading k
in NM, i.e. O to Ne, while heavier elements arise from recombination
due to mean-field resilience in isotropic systems.

136X e +1248n,
32 AMeV,

5 e .,, e

; ZOfm =100 150 L 300fm/c

e Open systems introduce a surface, ruled by the same interaction
term imposing UV cutoff for k, deformations and instabilities of
Plateau-Rayleigh type, depending on surface tension, local density
and temperature

e Clusters in BLOB are treated like the formation of any other heavier
fragment : they emerge naturally from potential ripples and are not
related to cluster-production cross sections.



Example : Dispersion relations to compare volume and surface instabilities

Analytic

—— volume instability (NV.M.), p=0.02t00.08 fm™, T=3MeV

— - volume instability (N.M.), p=0.08 fm3, T=1.5MeV

—— surface instability (cylinder r~2fm),
p=0.02t00.08 fm™, T=3MeV

— surface instability (arc/neck r=2.9fm),
p=0.16£0.04fm>, T=1.5MeV
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[NapoLiTani2021 arXiv :2203.13736]



Example of a production for medical applications
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Isospin drifts along the neck af Fermi energy

(Semi)peripheral coll. at
Fermi E determining p < psat
along a neck—

— combination of migration

and diffusion [Barax erav. PRerd10 (205), sl BOXH?EQ 13AMeV b=7fm
BALuer av. PRerdod (2008)] “l @ox\\\ 130 e 4 130x e
— one fragment (rarely two) 14 SR -.7;\0
could leave the system and S 3 o ‘(;Z)zfg?lloo
carry isospin observables - ol o ¢
(from isotopic content and e

kinematics). [Bsraver s PRCS5 (2012), L1F (‘ | | | |

Liowt£r . PLBG25 2005), Movrows v a. PRLT3 (1994), 0 20 40 60 80 100

DiToro er AL EPJA30 (2006), Hupax e ar. PRC86 (2012),
D Fiuieeo et az. PRC86 (2012), Brown er ar. PRCS7 (2013),
Jevec e AL PRL11S (2017),

Rooricuez Manso g1 a1 PRCY (2017).... ]



Isospin observables from the neck at Fermi energy

— one fragment (rarely two)
could leave the system and
carry isospin observables
(from isotopic content and
kinematics).

e In theory (BLOB), isotopic
content and kinematics of
neck fragments are highly
sensitive observables, they
can distinguish between
different forms of the
nuclear interaction.

e In practice, the position of
the emitting source and time
is difficult to measure.
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Test : Kr+Sn at 35AMeV with BLOB (one stochastic event)
e Matter drifts outward but the flow is along the reaction plane
e a large flat disk of low density (p ~ psat/4) neutron-rich matter forms

e from the disk, fragments and clusters arise at midrapidity and are
emitted with a dominant perpendicular component
Pn=pPp .

Distribution of 1 = 5
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Test : Kr+Sn at 35AMeV with BLOB (500 stochastic events at 300fm/c)

Distribution of fragment central positions at 300fm/c :

T ' y T

80~ - n
Kr remnant |
60— —

o |z "
401 Sn remnant I <l .
20 N

. ! s | s |
20 40 60 80

z [fm]



Test : Kr+Sn at 35AMeV with BLOB (stiff versus soft isov. contribution)

Time-dependent evolution of isotopic content :

86k 4124g
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stiff  soft
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e Strong dependence on the form of the interaction (larger difference

than the difference of isotopic content of the two participants!)




e Microscopic models are more explanatory than event generators, but
they require some preparatory work (i.e. searching for a specific
intricate observable)

— A modelling initiative is in preparation where theory-experiment
collaboration is promoted from the model-environment preparation to
the simulations

e In parallel, we aim at developing even more sophisticated models
where common assumptions are further reduced (i.e. semiclassical
assumptions, locality assumptions...)
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