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CERN

@ many accelerators,
extremely diverse

@ uniform communication
protocol (JAPC)

@ lots of low-level problems
already well automated

@ but: many high-level
problems still solved
manually
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CERN

Machine learning use cases:

@ advanced modeling (supervised learning)
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CERN

Machine learning use cases:

advanced modeling (supervised learning)

anomaly detection (semi-supervised learning)

beam scheduling (classical optimization)

improved diagnostics (supervised & unsupervised learning)

accelerator controls (reinforcement learning, classical & optimization)
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Motivation

e many different optimizers/APls
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Motivation

[SciPy} [BOBYQA} [Stable Baselines] @

T

e many different optimizers/APls
@ many different optimization problems

@ each problem involves complex machine
communication

@ operators don't want to juggle Python

scripts! (LERRL) (SPSZS) (Linac3 LEBT)
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Motivation

Goals:

@ provide ecosystem for accelerator optimization and control
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Motivation

Goals:
@ provide ecosystem for accelerator optimization and control
@ provide compatibility with as many algorithms as possible

o facilitate the progression
manual tuning — numerical optimization — machine learning

Guiding principles:
@ be agnostic over machine, communication protocol or devices
@ minimize boilerplate code that does not solve the problem
@ don’t make people pay for features they don't use
°

always leave an escape hatch open
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The Components: Common Optimization Interfaces (COI)

@ standardized interfaces and adapters for
various packages
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The Components: Common Optimization Interfaces (COI)

Common Optimization Interfaces

CERN ML s the project of bringing numeric r
reinforcement learning to the operation of the CERN accelerator complex.

@ standardized interfaces and adapters for

al optimization, machine

learning and

CERNML-COI defines common interfaces that facilitate using numerical optimiza-
tion and reinforcement learning (RL) on the same optimization problems. This

makes it possible to unify both approaches into a generic optimization application

various packages

The cerr
the COIs,

@ inspired by OpenAl Gym

@ extends their interfaces to L
numerical optimization
@ extend Gym metadata system with
CERN-specific info
» which accelerator?
» communicates with machines?

» wants to plot additional data? e

@ “20% programming, 80 % documentation”
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The Components: COI Utilities

Utilities for the Common Optimization |
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The Components: COI Utilities

@ separate package for faster versioning

@ encapsulate many common tasks
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time,
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The Components: COI Utilities

@ separate package for faster versioning
@ encapsulate many common tasks

@ removes repetitive tasks from the
optimization problems

@ modular, only adds dependencies for what
you use

Utilities for the Common Optimization
Interfaces

‘CERN ML s the project of bringing numerical optimization, machine leaming and
reinforcement learning to the operation of the CERN accelerator complex. The
€Ol are common Interfaces that make It posisble to use numerical optimization
and reinforcement learning on the same optimization problems.

This package provides utllity functions and classes that make It easler to work
with the COL. They encapsulate common use cases so that authors of optimiza-
tion problems don't have to start from scratch. This prevents bugs and saves
time,
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The Components: Generic Optimization Frontend & Framework (GeOFF)
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The Components: Generic Optimization Frontend & Framework (GeOFF)
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Log console

@ lists, configures and runs optimization problems
@ built-in list of optimizers

@ optimization problems are loaded as plugins pre-packaged or at runtime @)
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The Components: Machine Learning Platform (MLP)
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The Components: Machine Learning Platform (MLP)

@ infrastructure for versioned and reliable
storage of ML models

@ separates model code from trained
parameters

@ Python-focused but framework-agnostic
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@ separates model code from trained
parameters
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@ two modes of deployment
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The Components: Machine Learning Platform (MLP)

@ infrastructure for versioned and reliable
storage of ML models

@ separates model code from trained
parameters

@ Python-focused but framework-agnostic

@ two modes of deployment
» embedded in Python app
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The Components: Machine Learning Platform (MLP)

@ infrastructure for versioned and reliable
storage of ML models

@ separates model code from trained
parameters

@ Python-focused but framework-agnostic

@ two modes of deployment

» embedded in Python app
» standalone as REST server
usable from any kind of app
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Use Case: SPS Septum Alignment via Numerical Optimization

@ Alignment of electromagnetic septum, 9 DoF

i i

MST

Time spent aligning:
before: ~ 8h
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Use Case: SPS Septum Alignment via Numerical Optimization

@ Alignment of electromagnetic septum, 9 DoF ) ]
@ 2018: test of Powell algorithm UUU HHUUU
E A LM%W — :w: MST
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Time spent aligning:
before: ~ 8h
2018: ~ 45min
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Use Case: SPS Septum Alignment via Numerical Optimization

@ Alignment of electromagnetic septum, 9 DoF

A ]

@ 2018: test of Powell algorithm —] UUU HHUUU

2ol A S ——— MST
EF ool = o e I N ] orzf
> i N ol
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e 2021: BOBYQA algorithm in GeOFF

——— —— Time spent aligning:

e se==as. | VAR before: ~ 8h
2018: ~ 45 min
2021: ~ 10min
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Use Case: SPS Quadrupole Hysteresis Prediction via LSTMs

@ big issue for multi-cycling machines like SPS
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Use Case: SPS Quadrupole Hysteresis Prediction via LSTMs

@ big issue for multi-cycling machines like SPS
o extremely small effect (< 1 %), difficult to measure

= still measurably affects the tune!
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Use Case: SPS Quadrupole Hysteresis Prediction via LSTMs

@ big issue for multi-cycling machines like SPS
o extremely small effect (< 1 %), difficult to measure
= still measurably affects the tune!
Solution:

@ measure the field in lab
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Use Case: SPS Quadrupole Hysteresis Prediction via LSTMs

@ big issue for multi-cycling machines like SPS
o extremely small effect (< 1 %), difficult to measure
= still measurably affects the tune!
Solution:
@ measure the field in lab
@ train physics-inspired LSTM on function B(I(t),t)

2= 55 (v~ 912 + 8l — il + 25 - NN )
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Use Case: SPS Quadrupole Hysteresis Prediction via LSTMs

@ big issue for multi-cycling machines like SPS voro

o extremely small effect (< 1 %), difficult to measure
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Solution:
@ measure the field in lab
@ train physics-inspired LSTM on function B(I(t),t)
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Use Case: SPS Quadrupole Hysteresis Prediction via LSTMs

@ big issue for multi-cycling machines like SPS voro
o extremely small effect (< 1 %), difficult to measure 5 O m oI
@ 0.005
= still measurably affects the tune! 5 ooy
< 0.0000f
Solution: iy
@ measure the field in lab time / s
@ train physics-inspired LSTM on function B(I(t),t) PRyLSTM Network 5[5V
1 _i2 . -2 = 12 t :
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il v ,
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086475 { next milestones: predict ), @
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Use Case: LHC Longitudinal Parameters Tomography via VAEs

@ beam performance estimation requires longitudinal beam parameters

Network Implementation v3
(Extended Convolutional Encoder Decoder)

Loss B : MSE px/p:
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Use Case: LHC Longitudinal Parameters Tomography via VAEs

@ beam performance estimation requires longitudinal beam parameters
@ currently calculated via fits of longitudinal bunch profiles

Ep 0 PREDICTION @ 0.0

Ep 0 PS @ 0.0

Ep 0 T prof

Network Implementation v3 Loss B : MSE px/px
(Extended Convolutional Encoder Decoder)

Time Profiles

Loss A : MSE dim/dim
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Use Case: LHC Longitudinal Parameters Tomography via VAEs

@ beam performance estimation requires longitudinal beam parameters
@ currently calculated via fits of longitudinal bunch profiles
@ extremely time-consuming: can only be done online for single bunch

Network Implementation v3
(Extended Convolutional Encoder Decoder)

Loss B : MSE px/px

Loss A : MSE dim/dim
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Use Case: LHC Longitudinal Parameters Tomography via VAEs

currently calculated via fits of longitudinal bunch profiles

ML can speed this up enough to do it bunch-by-bunch

Network Implementation v3
(Extended Convolutional Encoder Decoder)

Ep 0 T prof

Loss B : MSE px/px

Loss A : MSE dim/dim
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Use Case: Beam Dump Pattern Feature Extraction via CNNs

Goal: classify dump kicker failures in SPS and LHC based on beam dump pattern

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022

12/15


https://indico.cern.ch/event/814099/

Use Case: Beam Dump Pattern Feature Extraction via CNNs

Goal: classify dump kicker failures in SPS and LHC based on beam dump pattern
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Use Case: Beam Dump Pattern Feature Extraction via CNNs

Goal: classify dump kicker failures in SPS and LHC based on beam dump pattern
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Model results in simulated data
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Use Case: PS RF Manipulations via RL

@ LHC beam production requires quadruple
splitting at 26 GeV/c in PS
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Use Case: PS RF Manipulations via RL

(—————— Bunch Rotation

@ LHC beam production requires quadruple
splitting at 26 GeV/c in PS

@ RF phase errors introduce spread in
bunch-by-bunch intensity and emittance

W

N. Madysa Machine Learning for Accelerators at CERN

00 !
Quadruple spltting

20 October 2022 13/15


https://cds.cern.ch/record/2780643/
https://indico.cern.ch/event/1195988/

Use Case: PS RF Manipulations via RL

@ LHC beam production requires quadruple ;
splitting at 26 GeV/c in PS

@ RF phase errors introduce spread in
bunch-by-bunch intensity and emittance

= RL agent corrects phases for uniform bunches
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Use Case: PS RF Manipulations via RL

@ LHC beam production requires quadruple

splitting at 26 GeV/c in PS
@ RF phase errors introduce spread in MK

bunch-by-bunch intensity and emittance

= RL agent corrects phases for uniform bunches

MD 6887: Start and end Agent Criterion (Comparing all bunches)

0.08 —e— start
—e— End
0.07 --- Stop Criterion

Episodes

(—————— Bunch Rotation

pm—y —
/ \ hes 25
/ \ he10 -
\ 11 [
/ 2 f20  |%a

EY 0 200 0 \ |[= o mE
\ —
Compression Merging
E 100 500 2000 2500 3000 o
ciime

i Quadruple spltting

o faster than classical optimization
due to reuse of experience
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N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 13/15


https://cds.cern.ch/record/2780643/
https://indico.cern.ch/event/1195988/

Use Case: PS RF Manipulations via RL

@ LHC beam production requires quadruple g ;; /N EE k
splitting at 26 GeV/c in PS } \\ : /o |\ EEl I //A
@ RF phase errors introduce spread in 3& e "M % \:;::a ‘
bunch-by-bunch intensity and emittance | a\s i t
= RL agent corrects phases for uniform bunches SR o i SRS A \ i
e o faster than classical optimization
= s due to reuse of experience
@ trained on simulation,
. evaluated on real machine

Episodes .
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Use Case: PS RF Manipulations via RL

(—————— Bunch Rotation

@ LHC beam production requires quadruple
splitting at 26 GeV/c in PS

@ RF phase errors introduce spread in
bunch-by-bunch intensity and emittance

500 2500 3000
ime [

= RL agent corrects phases for uniform bunches

MD 6887: Start and end Agent Criterion (Comparing all bunches)

o faster than classical optimization
due to reuse of experience

—o— start
—e— End
~=- Stop Criterion

@ trained on simulation,
evaluated on real machine

= @ episode length n € [2,18], n = 8.46

T e Y e J. Wulff et al. (2021, 2022) @
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GeOFF Use Cases

@ Linac3: steering of beam transfer line
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GeOFF Use Cases

Linac3: steering of beam transfer line

Linac4: 2 expert tools
PSB: operations (WIP) & commissioning

vvyyvyy

PS:

v

bunch recombination at PSB ejection
resonance compensation

RF optimization

injection to PS

used during commissioning
resonance compensation

transition gamma jump circuits
septa alignment for slow extraction
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GeOFF Use Cases

@ Linac3: steering of beam transfer line
@ Linac4: 2 expert tools
e PSB: operations (WIP) & commissioning

bunch recombination at PSB ejection
resonance compensation

RF optimization

injection to PS

vvyyvyy

@ PS: used during commissioning
> resonance compensation
> transition gamma jump circuits
» septa alignment for slow extraction

LEIR: used during commissioning
» transfer lines (from Linac3, to PS)
» injection bumps
» phase adjustment of RF cavities
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GeOFF Use Cases

Linac3: steering of beam transfer line
Linac4: 2 expert tools

PSB: operations (WIP) & commissioning

bunch recombination at PSB ejection
resonance compensation

RF optimization

injection to PS

vvyyvyy

PS: used during commissioning

> resonance compensation

> transition gamma jump circuits

» septa alignment for slow extraction
LEIR: used during commissioning

» transfer lines (from Linac3, to PS)

» injection bumps

» phase adjustment of RF cavities

@ SPS: expert tool & operations

>

vvYvyyvyy

tune adjustments

septa alignment for slow extraction
spill noise reduction

splitter optimization

injection kicker optimization
crystal shadowing
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GeOFF Use Cases

Linac3: steering of beam transfer line @ SPS: expert tool & operations
Linac4: 2 expert tools > tune adjustments

septa alignment for slow extraction
spill noise reduction

splitter optimization

injection kicker optimization
crystal shadowing

PSB: operations (WIP) & commissioning
bunch recombination at PSB ejection
resonance compensation

RF optimization

injection to PS

vvyyvyy
vvYvyyvyy

@ PS: used during commissioning
> resonance compensation
> transition gamma jump circuits
» septa alignment for slow extraction

@ used at almost all accelerators
» ISOLDE: lots of homogeneous devices
= CPS Optimizer
» LHC: fast acquisition, high safety req.
= bespoke algorithms

LEIR: used during commissioning
» transfer lines (from Linac3, to PS)
» injection bumps
» phase adjustment of RF cavities
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GeOFF Use Cases

Linac3: steering of beam transfer line @ SPS: expert tool & operations
Linac4: 2 expert tools > tune adjustments

septa alignment for slow extraction
spill noise reduction

splitter optimization

injection kicker optimization
crystal shadowing

PSB: operations (WIP) & commissioning
bunch recombination at PSB ejection
resonance compensation

RF optimization

injection to PS

vvyyvyy
vvYvyyvyy

@ PS: used during commissioning
> resonance compensation
> transition gamma jump circuits
» septa alignment for slow extraction

@ used at almost all accelerators
» ISOLDE: lots of homogeneous devices
= CPS Optimizer
» LHC: fast acquisition, high safety req.
= bespoke algorithms

LEIR: used during commissioning
» transfer lines (from Linac3, to PS)
» injection bumps
» phase adjustment of RF cavities

@ most often used as expert tool
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Conclusion:
@ machine learning isn't coming to CERN —it’s there!
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Conclusion:
@ machine learning isn't coming to CERN —it’s there!

» diagnostics, fault detection and modeling: use ML in production
» controls: dominated by classical optimization (but also RL!)

@ supported by ecosystem of independent projects and efforts (many not named here)

MLP: model storage and versioning
COI: uniform interfaces for optimization and RL
GeOFF: framework for optimizers, tasks and monitoring

The future:
@ modularize GeOFF, make it independent of GUI
e adapt GeOFF to be available outside of CERN (EURO-LABS)
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