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CERN

Machine learning use cases:
advanced modeling (supervised learning)

anomaly detection (semi-supervised learning)
beam scheduling (classical optimization)
improved diagnostics (supervised & unsupervised learning)
accelerator controls (reinforcement learning, classical & optimization)
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Motivation

many different optimizers/APIs

many different optimization problems
each problem involves complex machine
communication
operators don’t want to juggle Python
scripts!

SciPy BOBYQA Stable Baselines …

LEIR RL SPS ZS Linac3 LEBT …
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many different optimizers/APIs
many different optimization problems
each problem involves complex machine
communication
operators don’t want to juggle Python
scripts!
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Motivation

Goals:
provide ecosystem for accelerator optimization and control

provide compatibility with as many algorithms as possible
facilitate the progression
manual tuning → numerical optimization → machine learning

Guiding principles:
be agnostic over machine, communication protocol or devices
minimize boilerplate code that does not solve the problem
don’t make people pay for features they don’t use
always leave an escape hatch open
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The Components: Common Optimization Interfaces (COI)

standardized interfaces and adapters for
various packages

inspired by OpenAI Gym
extends their interfaces to
numerical optimization
extend Gym metadata system with
CERN-specific info

▶ which accelerator?
▶ communicates with machines?
▶ wants to plot additional data?

“20 % programming, 80 % documentation”

Optimization problem

Single-objective optimization
Multi-objective optimization

Function optimization
Reinforcement learning problem

Septum
alignment

Beam
steering

Transmission
optimization
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The Components: COI Utilities

separate package for faster versioning

encapsulate many common tasks
removes repetitive tasks from the
optimization problems
modular, only adds dependencies for what
you use
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The Components: Generic Optimization Frontend & Framework (GeOFF)

lists, configures and runs optimization problems

built-in list of optimizers
optimization problems are loaded as plugins pre-packaged or at runtime
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The Components: Machine Learning Platform (MLP)

infrastructure for versioned and reliable
storage of ML models

separates model code from trained
parameters
Python-focused but framework-agnostic
two modes of deployment

▶ embedded in Python app
▶ standalone as REST server

usable from any kind of app

Package index MLP registry MLP Cloud

Gitlab Python app Java app

download weightsinstall package

pa
ck

ag
e

upload weights

depend
download H

TT
P

co
nn

ec
tio

n

Developer Operator
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Use Case: SPS Septum Alignment via Numerical Optimization

Alignment of electromagnetic septum, 9 DoF

2018: test of Powell algorithm

2021: BOBYQA algorithm in GeOFF

Time spent aligning:
before: ∼ 8 h

2018: ∼ 45 min
2021: ∼ 10 min
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Use Case: SPS Quadrupole Hysteresis Prediction via LSTMs

big issue for multi-cycling machines like SPS

extremely small effect (< 1 %), difficult to measure
⇒ still measurably affects the tune!

Solution:
measure the field in lab
train physics-inspired LSTM on function 𝐵(𝐼(𝑡), 𝑡)
ℒ = 1

𝑁 ∑ (𝛼 ‖𝑦𝑛 − ̄𝑦‖2
2 + 𝛽 ∥ ̇𝑦𝑛 − ̇̄𝑦∥2

2 + 𝛾 ∥ ̈̄𝑦 − NN(𝑥, ̇𝑦)∥2
2

)

next milestones: predict 𝑄, 𝑄′

and generalize to more magnets
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Use Case: LHC Longitudinal Parameters Tomography via VAEs
beam performance estimation requires longitudinal beam parameters

currently calculated via fits of longitudinal bunch profiles
extremely time-consuming: can only be done online for single bunch
ML can speed this up enough to do it bunch-by-bunch

G. Trad and T. Argyropoulos
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Use Case: Beam Dump Pattern Feature Extraction via CNNs
Goal: classify dump kicker failures in SPS and LHC based on beam dump pattern

Model results in simulated data

Model trained on simulation and applied on real data Extraction of physical information from images
F. Velotti and B. Goddard
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Use Case: PS RF Manipulations via RL

LHC beam production requires quadruple
splitting at 26 GeV/𝑐 in PS

RF phase errors introduce spread in
bunch-by-bunch intensity and emittance

⇒ RL agent corrects phases for uniform bunches

faster than classical optimization
due to reuse of experience
trained on simulation,
evaluated on real machine
episode length 𝑛 ∈ [2, 18], 𝑛̄ = 8.46

J. Wulff et. al. (2021, 2022)
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GeOFF Use Cases

Linac3: steering of beam transfer line

Linac4: 2 expert tools
PSB: operations (WIP) & commissioning

▶ bunch recombination at PSB ejection
▶ resonance compensation
▶ RF optimization
▶ injection to PS

PS: used during commissioning
▶ resonance compensation
▶ transition gamma jump circuits
▶ septa alignment for slow extraction

LEIR: used during commissioning
▶ transfer lines (from Linac3, to PS)
▶ injection bumps
▶ phase adjustment of RF cavities

SPS: expert tool & operations
▶ tune adjustments
▶ septa alignment for slow extraction
▶ spill noise reduction
▶ splitter optimization
▶ injection kicker optimization
▶ crystal shadowing

used at almost all accelerators
▶ ISOLDE: lots of homogeneous devices

⇒ CPS Optimizer
▶ LHC: fast acquisition, high safety req.

⇒ bespoke algorithms
most often used as expert tool
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Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)

MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production

▶ controls: dominated by classical optimization (but also RL!)
supported by ecosystem of independent projects and efforts (many not named here)

MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)

MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)

MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)
MLP: model storage and versioning

COI: uniform interfaces for optimization and RL
GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)
MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)
MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)
MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI

adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion:
machine learning isn’t coming to CERN — it’s there!

▶ diagnostics, fault detection and modeling: use ML in production
▶ controls: dominated by classical optimization (but also RL!)

supported by ecosystem of independent projects and efforts (many not named here)
MLP: model storage and versioning
COI: uniform interfaces for optimization and RL

GeOFF: framework for optimizers, tasks and monitoring

The future:
modularize GeOFF, make it independent of GUI
adapt GeOFF to be available outside of CERN (EURO-LABS)

N. Madysa Machine Learning for Accelerators at CERN 20 October 2022 15 / 15


