VAMOS Status and Roadmap 2022-2025

GANIL Community Meeting 2022

Outline

- VAMOS++ Status : a decade of continuous improvements
- Physics opportunities and roadmap 2022-2025
 - Fission of actinides
 - Fission of neutron-deficient pre-actinides

A decade of upgrade at VAMOS !

Nuclear Structure and dynamic under the magnify glass of fission in inverse kinematics !

Key Dates

2009 : First expt FISSION@VAMOS (VAMOS+SPIDER+EXOGAM)
2011 : Fission Fragments Spectroscopy + Dynamics (VAMOS++ and EXOGAM)
2015-2017 : g-ray spectroscopy (VAMOS++ and AGATA + EXOGAM)
2017 : Fission dynamics (VAMOS++ and SPIDER)
2021 : MNT VAMOS+AGATA
2022 : Fission Dynamics (VAMOS++ and PARIS + FALSTAFF)

Associated developments

2009 : SPIDER

- 2011 : Upgrade VAMOS++
- 2014 : Silicium Dismantelling
 - => Upgrade to Ionization Chambers I
- 2015 : Target Multiwire DPS-MWPC
- 2016 : Electonics Upgrade NUMEXO2 I
- 2017 : Upgrade MW focal plane
- 2019 : Electronics Upgrade to NUMEXO2 II
 - Dedicated MUGAST Focal Plance
- 2020 : Upgrade Ionization Chambers II
- 2021 : Replacement of Drift Chambers by PS-MWPC
- 2022 : Upgrade Ionization Chambers III

2023 : PISTA !

VAMOS Focal Plane 2011 (VAMOS++)

VAMOS Focal Plane 2016-2017

2014 – 2017: that can be overcomed ...

VAMOS Focal Plane 2022

2022 : best identification performances ever !

2.547616e+08

133.4

397.

82.06

54.9

1.788e+08

450

The VAMOS learning curve

- VAMOS++
- DC + IC + Si (focal plane)

The VAMOS learning curve

The VAMOS learning curve

VAMOS Roadmap 2022-2025

Scientific Roadmap

Fission Dynamics

- \succ actinides
- neutron-deficient pre-actinides

Instrumental Roadmap

- PISTA
- Second Arm Detection (s)
- Gaz Cell Target

VAMOS Roadmap 2022-2025

Scientific Roadmap

Fission Dynamics

- \succ actinides
- neutron-deficient pre-actinides

Instrumental Roadmap

- PISTA
- Second Arm Detection (s)
- Gaz Cell Target

Fission Process

- Key Open Questions :
 - Dynamical evolution of complex quantum system
 - At the crossroad of many research topics of nuclear physics with essential interplay between structural and dynamical properties of nuclei.
 - Fully microscopic description of the whole fission process (fissioning system, fission dynamics and fission fragment distributions and properties) is not yet available
- Relevant observables for what ?
 - Direct isotopic (A,Z) fission fragments data
 - Complete fission yields
 => Probing the role of shell effect in fission and dissipation
 - Kinetic energies and excitation energies of the fission fragments
 Probing the scission configurations (A, Z, Energy sharing)
 - Fission Barriers (evolution as function of excitation energy):
 - => Probing the potential energy surface as function of E^*
 - => Exploring the fission paths (different modes of fission)

Changing N and Z content of fissioning systems

energy

evaporation

VAMOS

A,Z

Second

Arm

⇒ Access to « exotic » fissionning systems heavier than ²³⁸U

recoil

Gamma-ray spectrometer ⇒ Excitation energy sharing between the fission fragments

Surrogate reactions (transfer induced fission)

- \Rightarrow Selection of the fissionning system
- ⇒ Measurement of the excitation energy

SPIDER →

A, Z, E, angle

PISTA: Recoil

VAMOS Magnetic Spectrometer ⇒ Direct and Complete isotopic fission fragment yields

 ⇒ Precise center-of-mass fission fragment velocities isotopically (due to Coulomb barrier energies)

VAMOS Second Arm

⇒ Total Kinetic energies isotopically using the second arm (presently, only averaged without second arm)

SPIDER annular segmented dE-E silicon telescope provides the selection of the fissioning system and its excitation energy

Fission probability

VAMOS magnetic spectrometer provides the isotopic identification and the complete yields of the fission fragments FS

VAMOS among others

	VAMOS (GANIL)	SOFIA (GSI)	JAEA	n-induced*	Collaboration	Publications on Fission Dynamics M. Caamaño et al., Phys. Rev. C 92, 34606 (2015). C. Rodríguez-Tajes et al., Phys. Rev. C 89, 24614 (2014). M. Caamaño et al., Phys. Rev. C 89, 24605 (2013). D. Ramos et al., Phys. Rev. C 97, 054612 (2018). D. Ramos et al., Phys. Rev. C 99, 024615 (2019). D. Ramos et al. Phys. Rev. C 99, 024615 (2019). D. Ramos et al. Phys. Rev. C (2020) C. Schmitt et al. Phys. Rev. C (2022).	
Complete Fission Yields	Yes	Yes	Yes	No	Compostella - CFA/DAM		
lsotopic Fission Yields	Yes	Yes	No	No	 CNRS/IPHC CNRS/CENBG York University 		
Exotic Fissioning Systems	Yes	Yes	Yes	No	 IUAC, Dehli GANIL 		
Heavier than ²³⁸ U	Yes	No	Yes	Yes (long lived)	D. Ramos, et al. PI	D. Ramos, et al. PRC (2019)	
Excitation Energy Control	Yes (Improving)	(ongoing)	Yes	Yes	250Cf (46 MeV) 244Cm (23 MeV) 240Pu (10.7 MeV) 239Np (7.5 MeV) 238U (7.4 MeV) 1.55 1.5 1.45		
Both Fragments Detection	(ongoing) Yes	Yes	Yes	Yes			
Isotopic scission Kinetic Energy	(ongoing) Yes	No	No	No			
		I	I	I			

Fragment Z

Fission of Actinides

Key questions

- Driving Shell Effects => Y(A,Z), Scission Information (TKE, Mn)
- Excitation energy sharing : Prompt Neutron multiplicities f(Z)
- Angular Momentum in Fission => Y(A,Z) for different entrance channels, gamma rays

Fission of Actinides

Key questions

- Driving Shell Effects => Y(A,Z), Scission Information (TKE, Mn)
- Excitation energy sharing : Prompt Neutron multiplicities f(Z)
- Angular Momentum in Fission => Y(A,Z) for different entrance channels, gamma rays

Experimental Opportunities

- VAMOS : Isotopic Yields => <N>/Z
- PISTA : Entrance Channel Characterization (A,Z,E*)
 - Isotopic Yields as function of E* with unprecedent resolutions (< 1MeV)
 - Exotic transfer channels populated with different entrance channel
- Second Arm(s) : Scission
 - 2-v method to obtain scission Information (TKE, Prompt Neutron Multiplicities)
- ²³²Th Beams
- Gamma-rays (PARIS, EXOGAM)

Fission of Actinides

Key questions

- Driving Shell Effects => Y(A,Z), Scission Information (TKE, Mn)
- Excitation energy sharing : Prompt Neutron multiplicities f(Z)
- Angular Momentum in Fission => Y(A,Z) for different entrance channels, gamma rays

Experimental Opportunities

- VAMOS : Isotopic Yields => <N>/Z
- PISTA : Entrance Channel Characterization (A,Z,E*)
 - Isotopic Yields as function of E* with unprecedent resolutions (< 1MeV)
 - Exotic transfer channels populated with different entrance channel
- Second Arm(s) : Scission
 - 2-v method to obtain scission Information (TKE, Prompt Neutron Multiplicities)
- ²³²Th Beams
- Gamma-rays (PARIS, EXOGAM)

Precise ²³⁵U and ²⁴⁰Pu FF as function of E_X ²³⁸U @ 6 MeV/u + ¹²C \rightarrow ²³⁵U / ²⁴⁰Pu Fission around the **Th region** ²³²Th @ 6 MeV/u + ¹²C \rightarrow ²³⁰⁻²³²Th / ²³³Pa / ²³⁴U

Upgrade from SPIDER to PISTA

E cos(0) (MeV)

· Larger angular coverage

Second Arm

Vanos

VPP3CS

MWPPAL

MEWPPAC

 Isotopic Identification FF1
 Identification FF2
 Properties of coincident fragments, isotope by isotope = unprecedented insights into the nuclear structure and the fission dynamics.

Coincident Fission Fragments detection Second Arm Detection system(s)

- Isotopic fission fragments identificaton at the Scission Point
- Isotopic neutron evaporation measurements

Coincident Fission Fragments detection Second Arm Detection system(s)

- Isotopic fission fragments identificaton at the Scission Point
- Isotopic neutron evaporation measurements

However the most pertinent information will come from the Time Of Flight

Goals : Pre neutron evaporation mass and TKE => 2v method is the main goal => high resolution TOF (<100ps) over 2m

> Next Major devellopment of VAMOS Studied options with platic scintillator (stop) and electrostatic mirror (start)

Fission of pre-actinides

Key Questions

- Island of Assymetric Fission and competition between assymetric and symmetric fission
- « Universal » driving effects of protons from pre-actinide to actinides

Experimental opportunities

- Isotopic identification in VAMOS Y(A,Z)
- Very Different N/Z compared to actinides
- Second Arm (2v method) : Apre, Mn
- Gaz cell Target => Low E*, Inverse Kinematics+
- Challenges : Low Energy of recoils, Low Cross sections

Fission of pre-actinides

Key Questions

- Island of Assymetric Fission and competition between assymetric and symmetric fission
- « Universal » driving effects of protons from pre-actinide to actinides

Experimental opportunities

- Isotopic identification in VAMOS Y(A,Z)
- Very Different N/Z compared to actinides
- Second Arm (2v method) : Apre, Mn
- Gaz cell Target => Low E*, Inverse Kinematics+
- Challenges : Low Energy of recoils, Low Cross sections

C. Schmitt et al. PRL 126, 132502 (2021) A. Jinghan et al. PRC 2022

Fission of pre-actinides

Key Questions

- Island of Assymetric Fission and competition between assymetric and symmetric fission
- « Universal » driving effects of protons from pre-actinide to actinides

Experimental opportunities

- Isotopic identification in VAMOS Y(A,Z)
- Very Different N/Z compared to actinides
- Second Arm (2v method) : Apre, Mn
- Gaz cell Target => Low E*, Inverse Kinematics+
- Challenges : Low Energy of recoils, Low Cross sections

- ${}^{124}Xe + {}^{68}Zn \rightarrow {}^{192}Po (N/Z = 1.29)$ - ${}^{206}Pb + {}^{4}He \rightarrow {}^{210}Po (N/Z = 1.5)$

(Cooled) Gaz Cell Target + Second Arm

- Cooled He Gaz Cell at 193K
- Inverse Kinematics + Low E* (fusion ²⁰⁶Pb + ⁴He) where Shell Effect dominates
- Second arm (MWPC+IC+Si?)
 - Selection of reaction channel
 - TKE, Pre evaporation mass
- Possible extension to other gases and actinides studies

Outlook

- After 20 years, VAMOS provides unprecedent identification capabilites in particular for Fission Fragments => a continuous improvements strategy
- Clear and Intense Roadmap for 2022-2025
 - Unique scientific opportunities to unravel the driving mechanisms of low energy fission over the nuclear chart
 - Based on an instrumental roadmap (PISTA, Gaz Cell, Second Arm(s), +?)
- Open for propositions beyond 2025

/!\ Open Postdoc position 2023-2025

Thank you for you attention !

and thanks to all collaborators involved in the VAMOS program