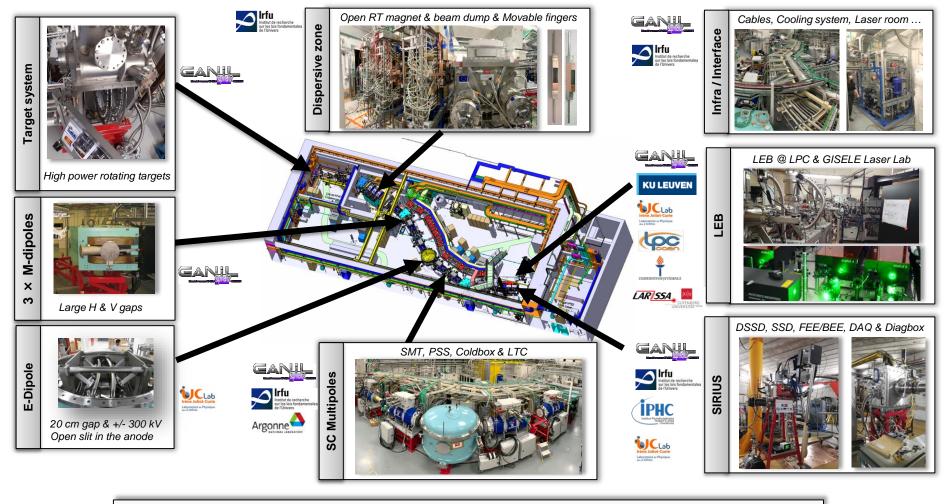

Super Separator Spectrometer

Status of the spectrometer construction

H. Savajols (SM), A. Drouart (DSM), M. Authier (TM), G. Sénécal (GPC)

Outline

S³ Spectrometer construction

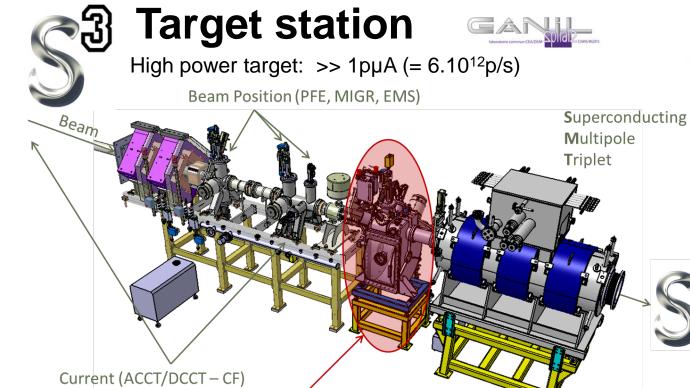

- Spectrometer introduction
- Target station
- Dipoles and open Room-Temperature multipole triplet
- Beam Dump
- SMT (Superconducting Multipole Triplets), PSS (Power Supply Systems fors SMT's) and Cryogenics

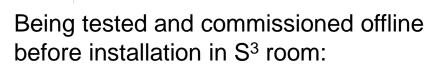
~3

- Electric Dipole
- Infrastructure
- Risks & Milestones

Super Separator Spectrometer

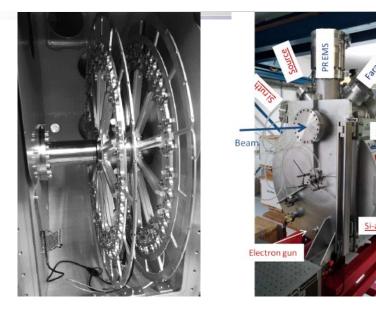
Main equipment and detection setups

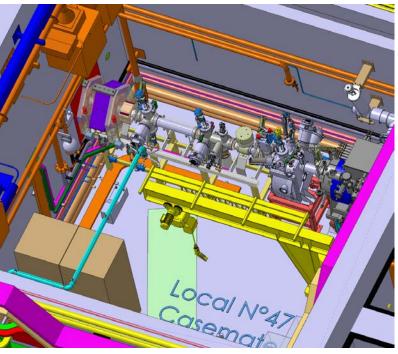



High selectivity > 10¹³ - High efficiency 50% - In flight mass separation > 1/350
Versatility & unique instrumentation (SIRIUS – LEB – FISIC)

S³ Spectrometer GCM 2022

Spectrometer main equipment status



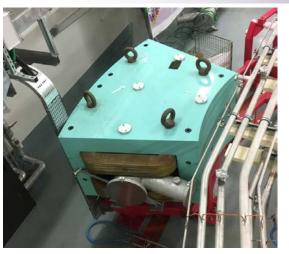

- End of diagnostics integration / qualification
- End of Wheel and insertions Command Control

Target Station

• On-line commissioning with GANIL beam (request in 2023)

can be done independently from other equipment

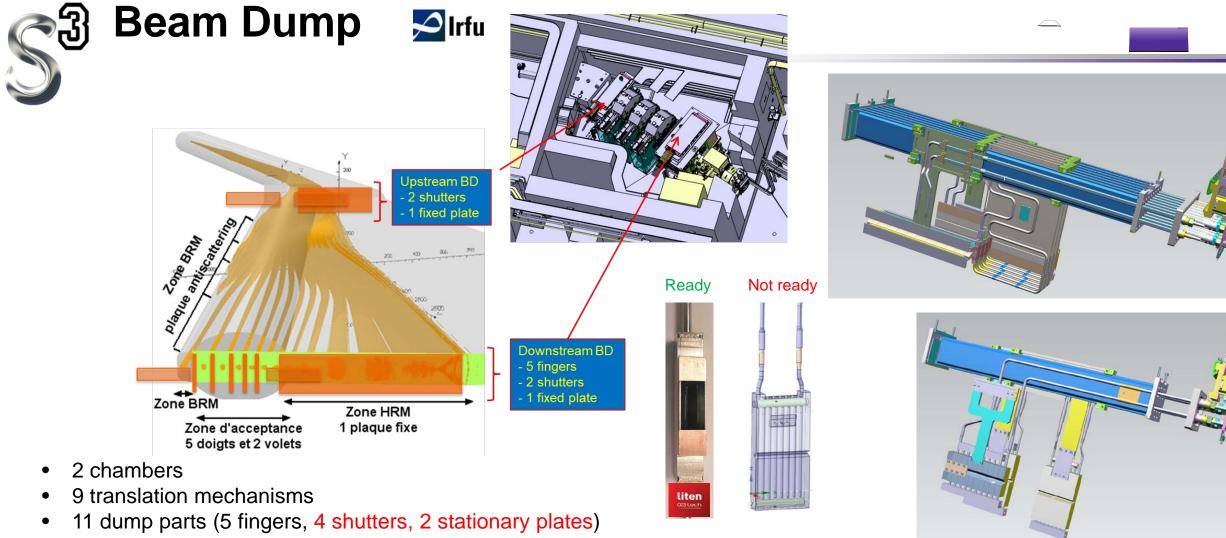
IR caméra



Room Temperature magnets

3 magnetic dipoles

- Built, commissioned at Ganil magnetic measurements facility, partially installed in S³
- Power supplies and cables installed
- Power-up tests in S³ in Q1 2023



Open RT Open Triplet

- Built, commissioned at Sigmaphi and installed in S³
- Power supplies and cables installed
- Power-up tests in S³ in Q1 2023

• Shielding: external lead shielding + internal shielding enclosure under vacuum

Everything studied/tested/validated at Saclay

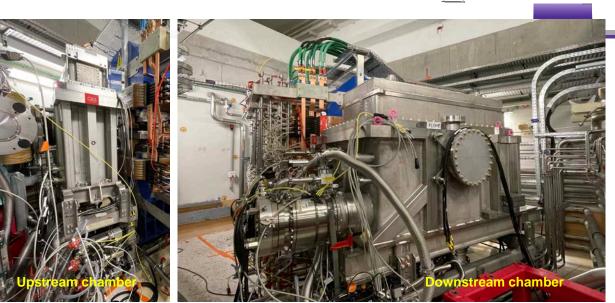
except the dump plates / cooling pipes assemblies (challenging... final architecture just decided)

 \rightarrow drawings end of 2022

→ dumps parts will be installed in Beam Dump chambers mid-2024. Not requested for spectro optics commissioning

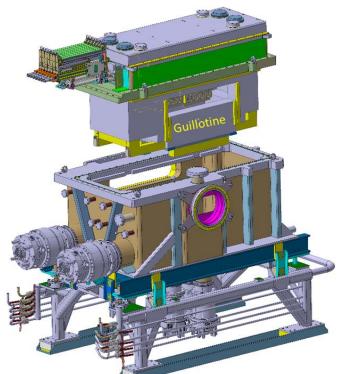
S³ Spectrometer GCM 2022

Beam Dump


🔎 Irfu

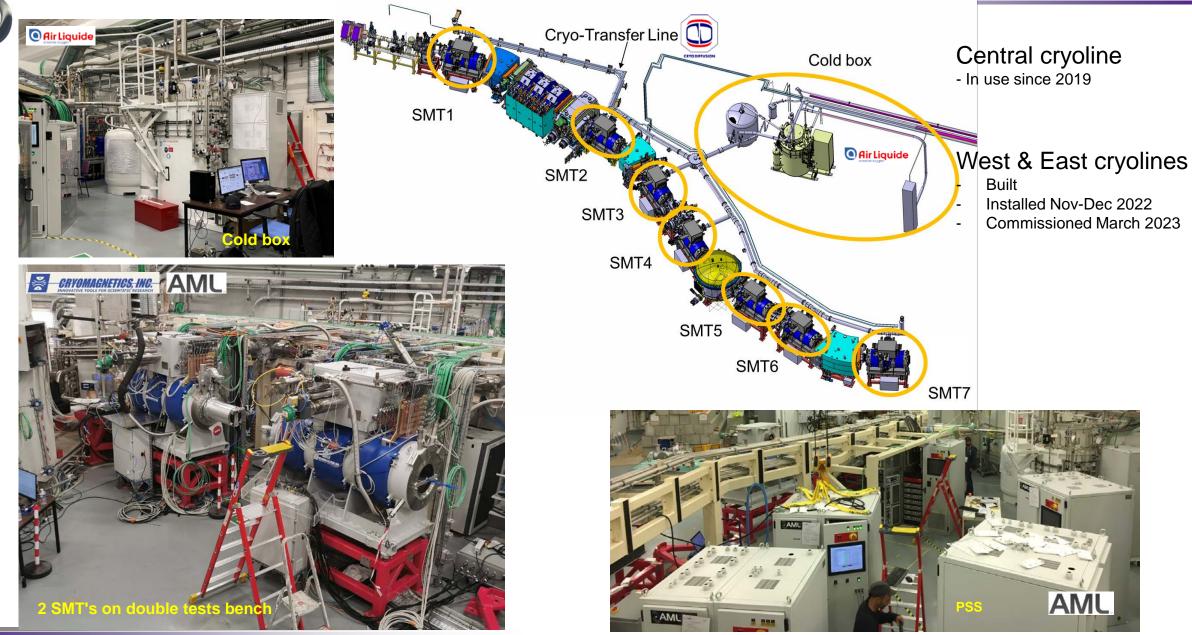
<u>Chambers</u> Built, installed and vacuum qualified in S³

<u>Translation mechanisms</u> Procured and qualified at Saclay



Downstream Beam Dump internal shielding enclosure

- Enclosure and sliding door ("guillotine"): qualified at Saclay
- Guillotine motorization and linkage: installed in S³



SMT's, PSS and Cryogenics

SMT's, PSS and Cryogenics

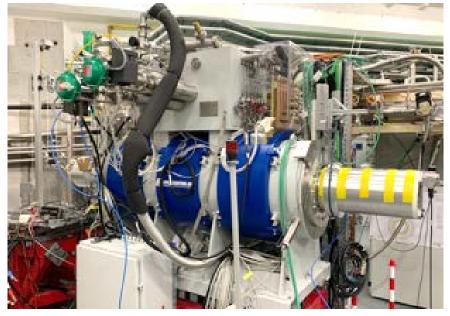
Cryogenics: cold box turbine broke in May...

- Tentative for LHe manual feeding in June didn't work...
- Reparation @ Air Liquide \rightarrow turbine available in December
- \rightarrow Next cool-down in March 2023

6 SMT's delivered:

- SMT1-2-4 OK
- SMT3: to be repaired at Ganil (delamination of YBCO tapes on 2HTS current leads)
- SMT5: some misunderstood quenchs/fast discharges during May quick aborted tests
- SMT6: not tested yet (had to wait for repaired cold box turbine)
- SMT7: will be tested by provider end of October and then shipped

Power Supplies Systems (PSS): commissioned and installed


3D mapper

Delivered April 2021 (ANL WP) and first magnetic field measurements & alignment

- 2021-2022 measurements : good agreement for field integrals
- Measurements to be finished in second cool-down sequence in 2023

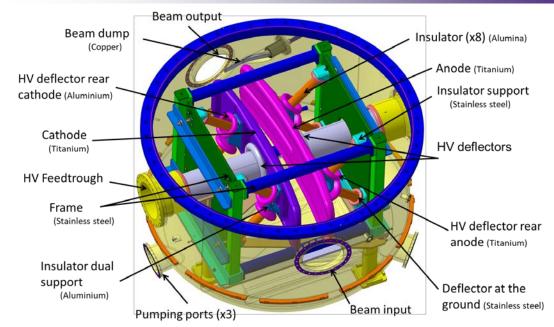
Next steps

- Install West and East branches of the Cryo Transfer Line (Nov-Dec 2022)
- Tune and commission new turbine
- Commission the complete Cryo Transfer Line
- Test SMT5, SMT6 and SMT7
- Finalize 3D magnetic field measurement & alignment in 2023
- All SMT in final position, tested and connected Q4 2023

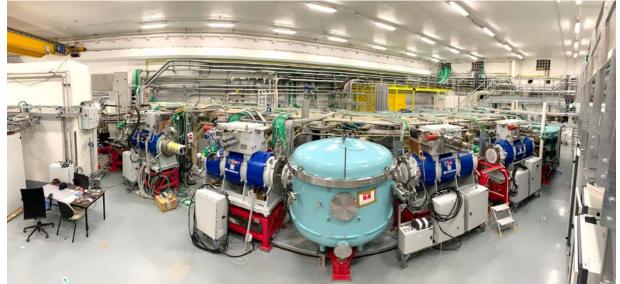
Electric Dipole

Chamber, Ti electrodes installed in S³ 300 kV power-supplies at GANIL

HV Feedtroughs delay (Friatec-Kyocera): +75%!


Delivery January 31st instead of September 30th

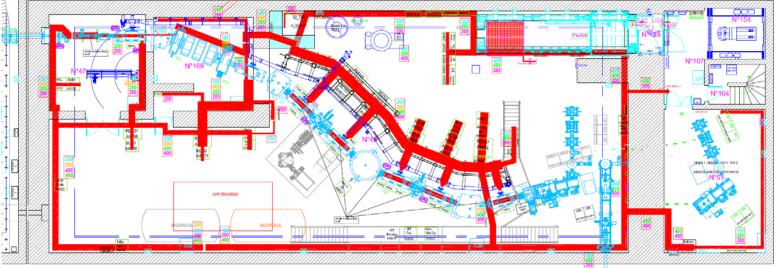
 \rightarrow first tests delayed and risky constraints on the installation process in 2023... (S³ room in forbiden access during tests)

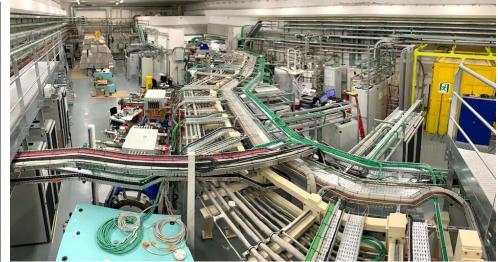

Final conditioning (2 months w/ nobody in the room) January 2024

- Dipole horizontal gap 20 cm
- Radius of curvature $\rho = 4 m$
- Bend angle θ = 22 degrees
- Electric field E = 3MV/m(±300 kV)
- Vertical acceptance 25 cm

Infrastructure

Utilities supply pipes (cooling water, compressed air, gas, gas recovery) Achieved & qualified


EQUEÉ MARINE CONTRACTOR CONTRACTO


Cable trays, cables, connections sner

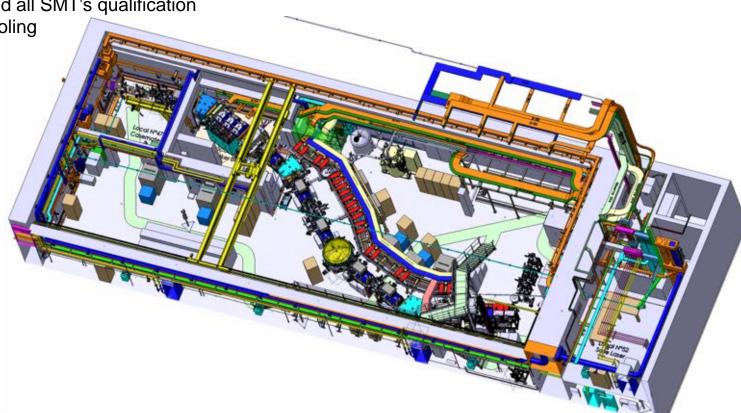
- High power CC cables: achieved beginning of 2018
- High power AC cables and signal cables: 2500 cables (80 km), 2 km cables trays
 - Phase 1: Cable trays, cable connections on cabinets and part of S³ process: **complete** (95% of the cables in place, 75% of the 4600 connectors)
 - Phase 2: Cable trays and cable connections on remaining S³ process: beginning of 2023

Beam Dump cooling Achieved & qualified

S³ Spectrometer GCM 2022

Installation & tests constraints

Sequencing, interdependences


- Because of specific valves configurations, only the 3 more recent SMT's (SMT5, SMT6 and SMT7) can be placed in positions 1 and 2... They are not qualified so far...
- Alignment of SMT's at final locations before Cryoline SMT port positioning & welding
- Cryoline installation, then cables final placement&connections enabling Cryoline qualification
- West Cryoline qualification before Downstream Beam Dump re-installation
- Downstream Beam Dump re-installation before SMTpos2 installation
- SMTpos1 before Target station installation
- Walls apertures concrete filling after Cryoline and all SMT's qualification
- Periodic maintenance campaigns preventing cooling

→ Reactive updating of a very precise schedule

Safety

- Temporary waiver for accessing in the West area ends March 27th 2023 (emergency exit won't be finished before 2024)
 - \rightarrow new waiver requested
- Achromatic Point diagnostic chamber to be installed at the very end of the installation (to keep an easy escape from West)
- Spectrometer room in forbidden access during Electric Dipole tests and conditioning (X-rays)

→ Tight relationship with Ganil safety division

Technical risks → Support of Ganil skills groups

- One of a kind equipment... Each object is a prototype
- 3 SMT's not qualified yet, Electric Dipole not qualified yet
- Early turbine failure not understood yet
- Spare parts expensive for S³

Industrial risks -> Support of Ganil and upper bodies procurements/legal divisions

- Providers and subcontractors often unpredictable
 - Big companies can have other priorities
 - Small companies can't withstand the budget risks associated with expensive objects (SMT's)
 - Human turnovers and strategy changes (PSS, SMT's superconducting coils \rightarrow no spare coils could be produced!)
 - Raw materials and Today's context

Human Resources → Strengthened relation with Ganil management and the Ganil "Cellule de Coordination des Projets"

- Turnover (many examples in the past), difficult to anticipate...
- fixed term employees don't provide secure solution in a moving schedule
- fixed term employees can not coordinate transverse WPs through Ganil management structure
- Lack of WP coordinators (permanent staff)
- Human resource constraint in a multiproject context and Ganil + Spiral 2 operation

Budgetary risks

- S³ budgetary margins almost at zero
- No money left in case of one SMT out of order
- No money for spare parts

\rightarrow Periodic S³ Steering committees

Planning

Flammig		2022									2023												2024											
		Q1			Q2 Q3					Q4			Q1		Q2			Q		χ 3			Q4 Q			Q1		Q2		Q3		Q4		
	l	F	м	AI	м	J.	JA	A S	0	N	I D	J	F	м	Α	м	J	J	Α	s	0	Ν	D	J	F	M I	A M	J	J	Α	S	o	Ν	D
Apertures concrete filling																																		-
47-169																																	T	
Standard apertures																																	T	
169-48				Ī		Π		Ι		Τ						Π	T									Т		T		Π			T	
Cryogenics																											Τ							_
Cold conditions								Τ		Τ																		T					Т	
Cryoline installation and tests																	T											1						
Cryogenics global tests																																	T	
SMT																																		_
SMT2 (final position 6)						6						6					T					Î						11	<u></u>	<u>mi</u>	<u> </u>	7	T	
SMT4 (final position 7)						7						7													S3 :		ctro r				itic			
SMT3 (final position 5)						5						5														C	omm	issic	onin	ıg				
SMT1 (final position 4)			3						1													4							T				T	
SMT5 (final position 3)			4	:	3T									3 T	ЗТ	3												1						
SMT6 (final position 1)			1	K /	4T		Î		1		1			4 T	4T								1					1						
SMT7 (final position 2)				▼							Z					4 T	4T	4T		4		2				T		1					T	00000
Field mapping					$\overline{\ }$	Deli	iveri	ies																										
3D mapping							Î	\sim			1								SM	T5								1						
Electric Dipole										\setminus												ĺ												
Feedtroughs installation and first tests									1				K															1						
Conditionning							Î		1		1																	1						
Target station installation																		l									T							
Global vacuum tests																																		-
PLCs and CC commissioning				Î				Î																										-
Safety validations																												-						_
																												Π		Π	Τ		Τ	
Beam Dump, dump plates			İİ	Î			Ī	Î	T		İ			İ İ	Î			Ī	Î							Ť	Ť			ΠÌ			Ť	
Dump parts final drawings																																		
Call for tender and contract		1	m		T		1		ĺ	-																								
Manufacturing						NOOD DO																												_
Integration-Qualification at Saclay				Í																														
Integration-Qualification in S ³																															\top		-	_

Electric dipole complete	31/01/2023
Last SMT end-to-end tests	31/07/2023
End of 3D mapping	13/10/2023
Last SMT installed	07/12/2023
End of vacuum global tests with PLC	19/04/2024
End of final cryogenics commissioning with all SMTs	19/04/2024
Start of Spectrometer's commissioning with beam	01/06/2024

End of Beam dump installation on spectrometer line 31/07/2024

Planning: ready for beam commissioning June 2024, without dump plates & fingers

Spectrometer construction summary

- All designs finished (except dumps parts: December 2022)
- 2022 not effective for SMT testing because loss of liquefier turbine
- Installation, qualification, infrastructure: significative involvement of Ganil teams
- Schedule led by SMT's end-to-end tests: 2 cold phases in 2023
- Final global tests in S1 2024 and beam commissioning in S2 2024
- Majors risks:
 - No spare parts for major equipment (turbine, High Temperature Superconducting current leads, superconducting coils...)
 - Manpower bottlenecks
 - Non-compliance or delays of industrial realizations