DE LA RECHERCHE À L'INDUSTRIE

Update of SEASON project

Spectroscopy Electron Alpha in Silicon bOx couNter

Marine VANDEBROUCK

GCM2022 Workshop October 2022

DE LA RECHERCHE À L'INDUSTRI

DE LA RECHERCHE À L'INDUSTRI

Goal 1: counting the laser ionized atoms to perform laser ionization spectroscopy

• Need good detection efficiency for α (5 – 12 MeV) and electrons (20 – 600 keV)

Tunnel configuration Si detectors (BB7 from Micron) ✓ Thickness 1 mm ✓ Active area 64 x 64 mm²

- Simulations (NPTOOL) in compact configuration:
- α detection efficiency 81%
- electron detection efficiency 51%

Goal 1: counting the laser ionized atoms to perform laser ionization spectroscopy

• Need good detection efficiency for α (5 – 12 MeV) and electrons (20 – 600 keV)

Tunnel configuration Si detectors (BB7 from Micron) ✓ Thickness 1 mm ✓ Active area 64 x 64 mm²

- Simulations (NPTOOL) in compact configuration:
- α detection efficiency 81%
- electron detection efficiency 51%

<u>Goal 2</u>: perform α , electron, γ decay spectroscopy

Need good energy resolution and avoid summing effects

Energy resolution (FWHM)	15 keV (α from 5 MeV to 12 MeV) 7 keV (electron from 20 keV to 600 keV)
Energy threshold	20 keV
Time resolution (FWHM)	20 ns

Si detectors (BB7 from Micron)

- ✓ Thickness: 1 mm
- ✓ Active area: 64 x 64 mm²
- ✓ Number of strips: 32 x 32
- ✓ Strip pitch: 2 mm
- ✓ Dead layer: 50 nm

• Test of the SEASON DSSD prototype Work of Damien THISSE (postdoc)

- Implantation foils
- Mechanics

Test of the SEASON DSSD prototype

Source 3α – Fixed low gain 550 fF

GCM2022

Source 3α – Fixed low gain 550 fF

Source 133Ba – Fixed high gain 50 fF

Source 3α – Fixed low gain 550 fF

Source 133Ba – Fixed high gain 50 fF

- Close to wanted performances with room for improvment (ex : dead layer)
- Ongoing tests with the adaptive gain

- Test of the SEASON DSSD prototype
- Implantation foils Work of Emmanuel REY-HERME (PhD student)
- Mechanics

Option 1: Carbon foils ~ 20 µg/cm² (90 nm)

Option 1.1: homemade C foils

Made at GANIL thanks to the help of G. Fremont

Option 1.2: Purchased from ACF metals C foils

The carbon foils are received on their glass plate

Option 1: Carbon foils ~ 20 µg/cm² (90 nm)

Option 1.1: homemade C foils

Made at GANIL thanks to the help of G. Fremont

Option 2: SiN foils ~ 15 μ g/cm² (50 nm) or ~ 9 μ g/cm² (30 nm)

Purchased 4 foils from the SILSON company (2 X 30 nm and 2 X 50 nm)

Option 1.2: Purchased from ACF metals C foils

The carbon foils are received on their glass plate

• Test bench at CEA Irfu/DEDIP (also used for FASLTAFF)

Foil	Nominal thickness (μg/cm²)	Measured thickness (μg/cm²)	Straggling (keV)
Carbon (GANIL)	~ 20	20 - 36	9 - 14
Carbon (ACF metal)	20(2)	19(1)	9
SiN (MICRON)	15(2)	12(1)	7

Deviation observed for SiN foils

Test bench at CEA Irfu/DEDIP (also used for FASLTAFF)

Foil	Nominal thickness (μg/cm²)	Measured thickness (μg/cm²)	Straggling (keV)
Carbon (GANIL)	~ 20	20 - 36	9 - 14
Carbon (ACF metal)	20(2)	19(1)	9
SiN (MICRON)	15(2)	12(1)	7

Deviation observed for SiN foils

Transmission Electron Microscopy (TEM) @JANNuS facility at IJCLab

- > Diffraction measurement \Rightarrow No crystalline structure/amorphous
- ➤ X-ray study ⇒ Silicon and Nitrogen with a stochiometry ~ 1/1

Element	\mathbf{Z}	$p_m(\%)$	$p_A(\%)$
Nitrogen	7	34.08	50.40
Silicon	14	63.12	46.56
Oxygen	8	1.87	2.42
Aluminium	13	0.44	0.34
Chlorine	17	0.49	0.29

➢ Electron Energy Loss Spectroscopy ⇒ Measured thickness 13(1) µg/cm²

GCM2022

Option 1: Carbon foils ~ 20 μ g/cm² (90 nm)

Option 1.1: homemade C foils

	Easy to make, not expensive
Õ	Problem of repeatability, fragile

Option 1.2: Purchased from ACF metals C foils

Option 2: SiN foils ~ 15 μ g/cm² (50 nm) or ~ 9 μ g/cm² (30 nm)

Robust
Expensive (~ 200 €/foil), support is imposed

DE LA RECHERCHE À L'INDUSTR

Implantation foils

Option 1: Carbon foils ~ 20 μ g/cm² (90 nm)

Option 1.1: homemade C foils

Selected option for SEASON

Option 2: SiN foils ~ 15 μ g/cm² (50 nm) or ~ 9 μ g/cm² (30 nm)

Robust Expensive (~ 200 €/foil), support is imposed

- Test of the SEASON DSSD prototype
- Implantation foils
- Mechanics
 Design at CEA Irfu/DIS

DE LA RECHERCHE À L'INDUSTR

Mechanics

Downstream Si detectors (Main and long T_{1/2} stations)

Upstream Si detectors (Main and long T_{1/2} stations)

GCM2022

- Detector and electronics have been validated
- Study of the implantation foils allowed to choose the material
- Design is finished, several elements have already been ordered
- First SEASON detector has been ordered and should be received in few weeks

Florent Bouyjou, Sandrine Cazaux, Thomas Chaminade, <u>Olivier Cloué</u>, Philippe Daniel-Thomas, Antoine Drouart, Alexis Gaget, Olivier Gevin, Thomas Goigoux (postdoc), Jean-Christophe Guillard, Hervé Le Provost, Jorge Mendes-Ribeiro, Gilles Minier, Julien Noury, Yann Reinert, Johan Relland, Emmanuel Rey-Herme (PhD student), Arnaud Roger, Barbara Sulignano, Christophe Theisen, Damien Thisse, Marine Vandebrouck

Thank you !