

Ejected

Α.

Teresa Kurtukian-Nieto Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France

Extracting

RF system

All isotopes

Stored

 $A_1, ..., A_N$

GANIL Community Meeting October 17th-21th, 2022

Physics opportunities

The ISRS allows an application of several reaction mechanisms to produce exotic nuclei in the energy levels of interest, decays of which can be observed by detecting particles or photons with the existing and planned detection systems

Reaction mechanisms

- ✓ Deep inelastic reactions
- ✓ Coulomb dissociation
- ✓ Transfer reactions in inverse kinematics
- ✓ Multinucleon transfer reactions
- \checkmark Fusion evaporation reactions in inverse kinematics
- \checkmark Transfer, breakup and fusion reactions
- ✓ Resonant elastic scattering

ISOLDE Recoil Separator ISRS

Based on superconductor combined function magnets dipolar and quadrupolar components Maximum magnetic field ~ 6 T

GANIL Community Meeting, October 17th - 21th 2022

Superconducting combined magnets

Summary	of	magnet	parameters	for	operation	mode	with	light	isotopes	(e.g. ¹¹ Li)	and	heavy	isotopes
(e.g. ¹¹⁸ Ag	an	d 226,234 R	a nuclides).										

Parameters	¹¹ Li	¹¹⁸ Ag	²²⁶ Ra	²³⁴ Ra
Effective charge $q_{\rm eff}$	2.999	35.457	52.883	52.879
Rigidity $B\rho$ [T m]	1.67	1.52	1.94	2.02
Deflection angle [deg]	36	36	36	36
Dipolar magnetic field B_{y} [T]	5.26	4.77	6.13	6.35
Quadrupolar strength KL [m ⁻¹]	5	5	5	5
Quadrupolar gradient G [T/m]	41.86	37.98	48.77	50.5

Magnets originally designed for a SC gantry for hadrontherapy

C. Bontoiu et al., IPAC2015, TUPWI014

C. Bontoiu et al., IPAC2015, WEPMN051

C. Bontoiu et al., NIMA 969 (2020) 164048

Fixed field alternating gradient (FFAG) focus

Teresa Kurtukian-Nieto

Canted Cosine Theta (CCT)

Two superimposed coils, oppositely skewed

pure cosine-theta field No axial field.

Teresa Kurtukian-Nieto

GANIL Community Meeting, October 17th - 21th 2022

Parameters	¹¹ Li	¹¹⁸ Ag	²²⁶ Ra	²³⁴ Ra
Effective charge $q_{\rm eff}$	2.999	35.457	52.883	52.879
Rigidity $B\rho$ [T m]	1.67	1.52	1.94	2.02

Multifunction and high order aberrations with CCT

Dipole

G. Kirby

Teresa Kurtukian-Nieto

GANIL Community Meeting, October 17th - 21th 2022

Ion optics

Fixed field alternating gradient (FFAG) focus

Significantly reducing the size with respect to standard recoil separator configurations

Angular and momentum acceptance – Resolving power

Tracking of Ra226 for 300 turns

 $Max(x', y') \approx (115, 160) \text{ mrad}$

Mass resolving power

The detected intensity peaks of both Ra233 and Ra234 separate longitudinally as the number of turns increases.

C. Bontoiu et al., NIMA 969 (2020) 164048

Teresa Kurtukian-Nieto

GANIL Community Meeting, October 17th - 21th 2022

High momentum acceptance desing

- FDF optics for non-scaling FFAG
- Lattice with sbend magnets. BMAD code

Beam	²³⁴ Ra
Kinetic energy	10 MeV/u
Rigidity, <i>Bρ</i> [T m]	2
Maximum beta functions, $\beta_{x,y}$ [m]	7.8, 13.5
Maximum dispersion, D_x [m]	0.32
F magne	et
Effective length [m]	0.497
Dipole field [T]	2.0
Quadrupole gradient [T/m]	12.3
D magn	et
Effective length [m]	0.55
Dipole field [T]	2.11
Quadrupole gradient [T/m]	-13.1

Expected max. momentum acceptance $\Delta p/p=+/-31.25\%$

14

12

10

Ξ

A conceptual design of the ISRS ring showing the main subsystems

helium circulating system that re-liquefies all the evaporating helium gas and consumes far less power than conventional systems

Injection/extraction systems

SuShi (for superconducting shield) septum using a canted cosine theta-like (CCT) magnet being developed for the HiLumi LHC phase

Dániel Barna, Martin Novák, Kristóf Brunner, et al. Rev. Sci. Instrum. 90, 053302 (2019)

Teresa Kurtukian-Nieto

GANIL Community Meeting, October 17th - 21th 2022

Isochronous mode

By placing a small RF cavity at the isochronous focus, it is possible to deflect the recoils according to their m/q ratio, independent of their energy and scattering angle.

By carefully choosing the harmonic and phase used in the cavity, several charge states of the same isotope can be aligned to have the same deflection and be focused at the same location.

Isochronous condition

⁵⁰Cr(⁵⁶Ni, α 2n)¹⁰⁰Sn at about 3.7 MeV/u, where the ¹⁰⁰Sn ions are produced with charge states ranging from 22+ to 26+.

Nuclear Instruments and Methods in Physics Research B 317 (2013) 319-322

Teresa Kurtukian-Nieto

GANIL Community Meeting, October 17th - 21th 2022

Isochronous mode

- DFD optics for non-scaling FFAG
- Matching with two additional quads. (Q). BMAD

 $\alpha_c = 0.98 \quad \gamma_t = 1.0102$ $\gamma = 1.0107 \ (^{234}\text{Ra at } 10 \text{ MeV/u})$

Beam	²³⁴ Ra		
Kinetic energy	10 MeV/		
Rigidity, Bp [T m]	2		
Maximum beta functions, $\beta_{x,y}$ [m]	2.85, 2.7		
Maximum dispersion, <i>D_x</i> [m]	1.8		
F magnet			
Effective length [m]	0.55		
Dipole field [T]	2.45		
Quadrupole gradient [T/m]	2.531		
D magnet			
Effective length [m]	0.497		
Dipole field [T]	2.133		
Quadrupole gradient [T/m]	-2.967		
Additional quads. Q			
Quadrupole gradient [T/m]	0.423		

Teresa Kurtukian-Nieto

Maybe at GANIL?

At LISE ?

detector

FFAG-SCMR advantages

- ✓ State-of-the-art iron-based magnetic systems are heavy energy-consuming. Currents up to 200 A with 20 KW energy consumption per coil are typical, requiring cooling systems to remove the heat dissipated by ohmic losses.
- Magnet operation suffers from nonlinearities, hysteresis, and remnant magnetization of the iron yokes.
- The use of SC magnets avoids energy losses of equivalent conventional warm magnets down to a few watts, reaching 30 times higher fields with 10 times smaller size and 1000 times reduced weight.
- ✓ The equivalent system of an FFAG-SCMR with similar functionalities, would be at least twenty times larger and three orders of magnitude heavier and energy-consuming.
- ✓ The advances in iron-free SC coils, together with cryostat optimization, make cryocoolers a good option that eliminates the need for important and expensive infrastructures to produce and distribute liquid helium and all the associated safety and maintenance constraints. 10 €/litter...
- Adding acceleration cavities to the layout, the FFAG-SCMR will become a very compact lightweight particle synchrotron accelerator.
- ✓ Recirculating target

ISRS Collaboration

I. Martel¹, L. Acosta², J.L. Aguado¹, M. Assie³, M. A. M. Al-Aqeel^{4,25}, A. Ballarino⁹, D. Barna⁵, R. Berjillos⁶, M. Bonora⁹, C. Bontoiu⁴, M.J.G. Borge⁷, J.A. Briz⁷, I. Bustinduy⁸, L. Bottura⁹, L. Catalina-Medina⁸, W. Catford¹⁰, J. Cederkäll¹¹, T. Davinson¹², G. De Angelis¹³, A. Devred⁹, C. Díaz-Martín¹, T. Ekelöf¹⁴, H. Felice⁹, H. Fynbo¹⁵, A.P. Foussat⁹, R. Florin²⁶, S. J. Freeman^{9,27}, L. Gaffney⁴, C. García-Ramos¹, L. Gentini⁹, C. A. Gonzalez-Cordero¹, C. Guazzoni²⁹, A. Haziot⁹, A. Heinz¹⁶, J.M. Jimenez⁹, K. Johnston⁹, B. Jonson¹⁶, T. Junquera¹⁷, G. Kirby⁹, O. Kirby³⁰, T. Kurtukian- Nieto¹⁸, M. Labiche²², M. Liebsch⁹, M. Losasso⁹, A. Laird¹⁹, J.L. Muñoz⁸, B.S. Nara Singh²⁰, G. Neyens⁹, P.J. Napiorkowski²⁸, D. O'Donnell²⁰, R. D. Page⁴, D. Perini⁹, J. Resta-López²¹, G. Riddone⁹, J.A. Rodriguez⁹, V. Rodin^{4,22}, S. Russenschuck⁹, V.R. Sharma², J. Sánchez- Segovia¹, K. Riisager¹⁵, A.M. Sánchez-Benítez¹, B. Shepherd²², E. Siesling⁹, J. Smallcombe⁴, M. Stanoiu²⁶, O. Tengblad⁷, J.P. Thermeau²³, D. Tommasini⁹, J. Uusitalo²⁴, S. Varnasseri⁹, C.P. Welsch⁴, G. Willering⁹.

¹CCTH, Univ. Huelva, Spain. ²Inst. de Física, UNAM, Mexico. ³Univ. Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France. ⁴Dept. of Physics, Univ. Liverpool, UK. ⁵Wigner Research Centre for Physics, Budapest, Hungary. 6TTI Norte, Santander, Spain. 7IEM, CSIC, Madrid, Spain. 8ESS-BILBAO, Bilbao, Spain. 9CERN, Geneva, Switzerland. 10Dept. of Physics, Univ. Surrey, UK. 11Dept. of Physics, Lund Univ., Sweden. 12Univ. Edinburgh, UK. 13LNL INFN, Italy. 14Uppsala Univ., Sweden. 15Dept. of Physics and Astronomy, Aarhus Univ., Denmark. 16Dept. of Physics, Chalmers Univ. of Technology, Göteborg, Sweden. ¹⁷ACS, Orsay, France. ¹⁸Univ. Bordeaux, CNRS, Gradignan, France. ¹⁹Dept. of Physics, Univ. York, UK. ²⁰School of Computing, Engineering & Physical Sciences, Univ. of West Scotland, UK. ²¹ICMUV, Univ. de Valencia, Spain. ²²Cockcroft Institute, Daresbury, UK. ²³Universite de Paris, CNRS, Astroparticule et Cosmologie, France. ²⁴Faculty of Mathematics and Science, Univ. Jyvaskyla, Finland. ²⁵IMIS Univ. Riyadh, Saudi Arabia. ²⁶IFIN-HH, Bucharest, Romania. ²⁷Department of Physics & Astronomy, Univ. Manchester, UK. ²⁸HIL, University of Warsaw, Poland. ²⁹Dept. Electronics, Info. and Bio., Politecnico di Milano, Milan, Italy. ³⁰Paul Scherrer Institute, Zurich, Switzerland.

Spain France Extracting Stored **RF** system All isotope:

72 members of 30 Institutions from 13 countries

Italy Switzerland Poland Sweden Hungary Denmark Finland Romania Mexico Saudi Arabia

UK

That's all folks