Central role of spatial ROS distribution at the nanometric scale in the molecular response to carbon ion irradiation

> Cellular and Molecular Radiobiology Lab UMR/CNRS 5822 - IP2I Lyon-Sud Medical School Claire Rodriguez-Lafrasse' Lab

Hadrontherapy with carbon ions

Precise ballistics and high RBE

 Treatment of deep-seated and radioresistant cancers

Which molecular mechanisms are specifically involved in the tumor response to carbon ions? How to explain RBE? Irradiation since 2003 iPAC, FranceHadron

- ¹³C 75 MeV/n and ¹²C 95 MeV/n
- More than 100 UTs / About 4 to 6 UTs per years
- For biology experiments : 2/3 UTs max 1 entrance/hour

Possible thanks to :

- Beam for biology (energy, homogeneity, size, dosimetry, motorised sample holder...)
- ARIA Laboratory

Paradigm of the stealth bomber

To explain the tumor cell response to carbon ions

Relies on the spatial distribution of Reactive Oxygen Species (ROS) at the nanometric scale

Monte Carlo simulations of OH° radicals

2 Gy C-ions (physical equivalent dose)

1 Gy C-ions (biological equivalent dose)

Nucleus volume

- 2 Gy photons
- Local distribution at the nanometric scale:
 - Clusters around tracks (C-ions)
 - Dense and homogeneous distribution (photons)

Very different consequences at the molecular / cellular level!

Paradigm of the stealth bomber

Experimental data supporting both effects

The bomber effect

At the DNA level

• Complex DNA lesions, Clusters of un-repairable DNA lesions (DSBs)

iPAC p866 3UT / FranceHadron Wozny *et al.*, Scientific Reports, 2020 Wozny *et al.*, Cancers, 2021

• No influence of telomeres' length on cell killing

٠

Correlation between telomeres' length and radioresistance in 12 glioblastoma cell lines after photons exposure BUT not C-ions

• No relationship between telomeres' length and the response to C- ions in cells transfected with telomerase (artificial increase of telomere' length)

iPAC p813 5UT Ferrandon et al. Mol Neurobiol, 2013

The bomber effect

At the cellular level

• Protein homeostasis:

Increase of damaged proteins

More oxidized proteins miscleared by the proteasome

Consequences of the bomber effect

Cell death

- Earlier and more important compared with photons
- No specific mechanism involved
 - early apoptosis or mitotic death
 - p53-independent ceramide-dependent apoptosis

iPAC p744H 4UT / p790H 18UT Maalouf et al., IJROBP 2009 Alphonse et al., BMC Cancer, 2013 Ferrandon et al. Cancer Letter, 2015

More efficient on cancer stem cell killing

FranceHadron

Bertrand et al., Stem Cell, 2014 Moncharmont et al. Oncotarget, 2016

Consequences of the bomber effect

- Cell killing is independent of :
 - the O₂ concentration

Interest in the treatment of hypoxic tumors

FranceHadron / iPAC p1166H 4UT

Wozny et al., British Journal of Cancer, 2017 Wozny et al. Scientific Reports, 2020

• the radiation dose-rate

Interest in the planification of treatment

iPAC p737H 9UT Wozny et al., Frontiers in Oncology, 2016

A large proportion of cell volume is not hitten by C-ions:

thresholds of ROS necessary to trigger survival and defense mechanisms not reached

 Less DNA Damage detection (nucleoshuttling of ATM) under normoxia or hypoxia

• Lower DNA damage signalling and repair (NHEJ/HR) under normoxia or hypoxia

• No invasion-migration of CSCs

Less metastases under normoxia and hypoxia

Few/no activation of invasion/migration signalling pathways

FranceHadron Montcharmont et al. Oncotarget 2016 Wozny et al. Cancers 2019

Stress granules (SG):

- non-membrane cytoplasmic aggregates
- regulate gene expression to protect cells

Formation of SG following photon irradiation

No SG in response to C-ions

Conclusions

Carbon ions better cure radioresistant cancers

The Bomber effect

- Complex DNA damage
- Independent of the telomere length
- More oxidized proteins and less induction of proteasomal activity
- More cell death
- No oxygen effect / Independent of Dose-rate

The Stealth effect

- Lower DNA damage detection and repair
- No invasion/migration
- No/lower activation of cell survival pathways
- No stress granules formation

Maalouf *et al.* 2009, IJROBP Hanot *et al.* 2012 Plos One Alphonse *et al.* 2013 BMC cancer Ferrandon *et al.* 2013 Mol Neurobiol Bertrand *et al.* 2014 Stem Cell Rev Ferrandon *et al.* 2015 Mol Cancer Ferrandon *et al.* 2015 Cancer Letter Moncharmont *et al.* 2016 Oncotarget Wozny *et al.* 2016 Frontiers in Oncology Wozny *et al.* 2017 British J. Cancer Wozny *et al.* 2019 Cancers Wozny *et al.* 2020 Scientific Reports Wozny *et al.* 2021 Cancers Averbeck and Rodriguez-Lafrasse 2022 IJMS

Perspectives

- Oxygen, Proton, and Helium ions for the irradiation of cells in 2D or 3D culture
- Possibility to have a vertical beam (3D culture)
- Irradiation at lower energies + at different positions SOBP
- Animal facility for *in vivo* experiments
- Flash irradiation at very high dose rate with Protons, Helium and Carbon ions