Perspectives with gamma-ray detectors at GANIL

MICHAŁ CIEMAŁA (IFJ KRAKOW) GANIL COMMUNITY MEETING, 2022, 18/10/2022

Presentation plan

Gamma-ray detectors used recently at GANIL EXOGAM, PARIS setups used with VAMOS, LISE and NFS, highlights and perspectives

Recent AGATA campaign at GANIL AGATA 2 GANIL – (timescale >2025)

Conclusions

Highlights, EXOGAM & PARIS use in 2022

With VAMOS:

Insight into fission from the gamma probe: Going beyond current status with PARIS@VAMOS, Ch. Schmitt, A. Lemassson, M. Cieamła et al.

At LISE:

Study of deformed and spherical 2⁺ states via Coulomb excitation and first time measurement of PDR in ³⁴Si, *R. Lica, S. Calinescu, O. Sorlin, et al.*

Study of Proton/Neutron contribution along Silicium isotopic chain, S. Grévy, R. Thomas, O. Sorlin et al.

At NFS:

Nuclear structure studies using neutron inelastic scattering reactions, example of the pygmy resonance in ¹⁴⁰Ce, *M. Vandebrouck, I. Matea et al.*, talk on Thurdsday

Photon Array for studies with Radioactive Ion and Stable Beam - PARIS (travelling detector)

VAMOS + PARIS& EXOGAM

Perspectives (tentative selection)

Systematic study of fusion-induced fission with, by example, ²³⁸U+¹²C and ²³⁸U+²⁶Mg with use of VAMOS + PARIS + EXOGAM combined setup.

Possible extension by adding second arm or coupling with the SPIDER telescope \rightarrow evolution of fission properties with excitation energy, as well as to quasi-fission like mechanisms.

LISE + PARIS& EXOGAM

E798_19 experiment at GANIL-LISE (June-July 2022)

Study of deformed and spherical 2⁺ states via Coulomb excitation and first time measurement of PDR in ³⁴Si

R. Lica, S. Calinescu, O. Sorlin, et al.

Beams: ³⁶S at ~ 56 MeV/u (5.7 UT) ³⁴Si at ~ 58 MeV/u (20.5 UT)

Targets: ¹²C - 236 mg/cm² ¹⁹⁷Au - 320 mg/cm²

Following the preliminary analysis (partial statistics):

- we managed to acquire the needed statistics to clarify the uncertainty of the B(E2) corresponding to the first excited 2+ state of ³⁴Si (3.3 MeV)
- there are some weak indications for the presence of the spherical 2+ (at 5.3 MeV)
- structures in the spectrum at 6-7 MeV which could be connected to the PDR.

Beam composition: ~90% of ³⁴Si

T CATSD4 CFA vs dE D6 TCATSD4 CFA vs dE D6 Entries 5.456712e+07 6.5 6 5.5 5 4.5 223.9 4.816 ³⁴Si Mean x Mean v 1.228 RMS x RMS y 0.1993 2.589e+07 Integral 3.5 TOF D4 D6

Validation of the experimental method: 36 S beam (well known 2₁⁺ at 3.29 MeV, B(E2)=2.83(24) W.u.)

ParisQS_Doppler0 (ParisTDSSD>-400 && ParisTDSSD<-360 && PARISPSDV>-0.04 && PARISPSDV<-0.135 && coulex && ParisTCATS>-8 && ParisTCATS<-1.5 }

Courtesy of R. Lica

Physics of the N=20-28 shell closure

E823 : Study of Proton/Neutron contribution along Silicium isotopic chain

Perspectives (tentative selection)

GRIT/MUGAST coupled to EXOGAM (PARIS?) at LISE for nuclear structure and/or nuclear astrophysics interest.

Study collective modes with use of coupled ACTAR and PARIS?

(issues: electronic compatibility, flanges?)

Coulomb excitation and PDR studies in exotic nuclei with EXOGAM and PARIS.

AGATA_2_GANIL

The AGATA project : THE ultimate spectrometer

180 (60 triple-clusters) 36-fold segmented crystals

- Amount of germanium: 362 kg
- Solid angle coverage: 82 %
- Singles rate >50 kHz
- Efficiency: 43% (M_{γ} =1) , 28% (M_{γ} =30)
- Peak/Total: 58% ($M_{\gamma} = 1$), 49% ($M_{\gamma} = 30$)
- Angular Resolution: ~1°

The project timeline is to complete the array by 2030

Combination of:

□ segmented detector

pulse-shape analysis

 \Box tracking the γ rays

□ digital electronics

S. Akkoyun *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A 668, 26 (2012). E. Clément *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A 855, 1 (2017). AGATA White Book : W. Korten et al, Eur. Phys. J. A (2020) 56:137

AGATA campaign at **GANIL**

After 7 years [2014-2021], the AGATA@GANIL campaign was completed

Presently at LNL with the first experiments completed

laboratoire commun CEA/DRF

29 experiments

CNRS/IN2P3

AGATA@GANIL were many sub-campaigns

2015-2017

AGATA coupled to VAMOS, FATIMA, PARIS

2018

AGATA coupled to NEDA- DIAMANT

AGATA coupled to VAMOS MUGAST

AGATA coupled to VAMOS, EXOGAM, 2nd Arm, LEPS

AGATA campaign at GANIL

A huge scientific impact at GANIL

Years

AGATA is operated under a Memorandum of Understanding

All partners have signed on the 25th of March 2022

New AGATA Spokesperson, chair of the steering : A. Bracco (INFN-Milano) since 31st of March

MoU Phase 1 + Addendum

2010-2012 Legnaro, Italy Intense stable beams 15 detectors

AGATA Demonstrator + PRISMA at LNL

2012-2014 GSI, Germany Fast fragmentation beams 25 detectors

AGATA at GSI

2014- 2021 GANIL, France ISOL and stable beams approaching 1π (45)

AGATA at GANIL

MoU Phase 2

2021--LNL, Italy Stable beams SPES radioactive beams >2026 FAIR, Germany ISOLDE, CERN GANIL, France RIB at low and high energies

AGATA at LNL

Courtesy of E. Clément

AGATA_2_GANIL (> 2025)

- Heavy beams (Xe, Pb, Th, U) at the Coulomb barrier
- High intensity stable beams
- RIB at ~30-70 MeV/A at the LISE fragment separator
- Uniqueness : Post-accelerated ISOL RIB using the upgraded SPIRAL1 facility for A < 80
- Extensive campaign using the SPIRAL1 beam for
 - Nuclear structure
 - Nuclear Astrophysics
 - Nuclear reaction mechanism
 - Nuclear clustering
 - Coupling with GRIT, VAMOS, LaBr3, neutron detector

Summary

Presented possibilities to use **EXOGAM** (high resolution) and **PARIS** (sub ns time resolution and good high energy gamma-ray efficiency) in upcoming campaigns, i.e., studies with VAMOS++ spectrometer, at LISE and at NFS.

Questions: Fast timing (**FATIMA**)? Connection to other GANIL detector setups like INDRA+FAZIA? Connection of ACTAR to PARIS?

Foreseen come back of AGATA to GANIL AGATA 2 GANIL will exploit unique possibilities at GANIL in the > 2025 perspective.

Many thanks for delivering slides for

Ch. Schmitt, R. Lica, S. Grévy, Q. Delignac and E. Clément