Instrumentation for hadrontherapy

É. Testa

Institut de Physique des 2 Infinis de Lyon

GANIL community meeting – October 19, 2022

Main challenges related to instrumentation in hadrontherapy

Development of compact accelerators

- Cost reduction
- Easier implementation in hospitals
- (Not addressed in this talk)

Ion-range verification

- Strong impact of range uncertainties on dose distributions
- Illustration: proton irradiations with a 1 cm patient shift
- $\Rightarrow\,$ Systems of ion-range verification highly desirable

Precise modeling of the biological dose

- Strong impact of ion type and energy on cell survival for a given dose
- Need for biophysical models (with a limited number of parameters)
- \Rightarrow Need for experimental data \Rightarrow beams lines for cell irradiations

Outline

Ion-range verification

2 Beam lines for cell irradiations

Introduction to ion-range uncertainties and verifications

Limitations of current treatment plans

- Large margins around the PTV: \sim 1 cm for ranges of 20 cm
- "Non-optimal" field plans
- \Rightarrow Ballistic properties of ions not fully exploited
- \Rightarrow Ion-range verification highly desirable

Ion-range verification with nuclear imaging

• Correlation between dose and nuclear reaction distributions (e.g. β^+ emitters and prompt gammas)

PET

- Pioneering investigation (LBNL, [Maccabee 1969]) \Rightarrow clinical studies in 1990's
- Modality still under development (INSIDE project in Italy, OpenPET in Japan) ([Bisogni 2017, Tashima 2016])

Instrumentation for hadrontherapy

Current modalities

- Main: PET and Prompt Gammas (PG)
- But also: Bremsstrahlung, ionoacoustic waves and post-treatment MR images
- Combination of several modalities considered (e.g. PET and PG [Parodi 2016])

$\mathsf{PET} \mathsf{ vs} \mathsf{ PG}$

• Production rates: very similar

	PET	PG
Pros	- Mature technology	- Direct Emission (\Rightarrow Real-time)
	- "Natural electronic collimation"	
Cons	- Washout	- Neutron background
	- Delayed emission	- High energy gammas

· Possibily to retrieve information on ion range from all PG features: position, energy and TOF

PG detection modalities + Interaction Vertex Imaging (IVI)

PG modalities [\checkmark : mandatory, (\checkmark): optional]

	Imaging systems			Non-imaging systems				
PG feat.	Phys.	Elec.	PG Time Imag.	PG Timing	PG Peak Integ.	PG Energy Integ.	PG Spectro.	
	collim.	collim.	(PGTI)	(PGT)	(PGPI)	(PGEI)	(PGS)	
Position	\checkmark	√						
Energy	(√)	(√)	(√)	(√)	(√)		\checkmark	
TOF	(√)	(√)	\checkmark	\checkmark	(√)		(√)	
Statistical					\checkmark	\checkmark		
meas.								
Advantages	Direct measurement							
Advantages			Light devices					

CLaRyS collaboration

- IP2I Lyon, LPSC Grenoble, CPPM Marseille, CREATIS Lyon
- PG : Investigations/developments of 5 modalities out of 7
- Interaction Vertex Imaging (IVI): Detection of secondary protons (carbon ion beams)
 - Main advantage: tracking (need for collimation with PG)

PG detection: the IBA prototype (the reference)

- Knife-edge slit camera (KES)
- Tested during treatments with passive and active beam delivery (2016, 2017)
- ⇒ Millimetric precision achieved with large spots or "spot grouping"

Examples of French developments: Prompt Gamma Time Imaging (LPSC-CPPM-CAL)

Principles and developments

- Principle: Reconstruction of PG emission points from precise TOF measurement (a few 100 ps FWHM)
- Development: Prototype with
 - \sim 30 detectors (PbF₂ + SiPM)
 - Time resolution: \sim 245 ps (FWHM)
 - Dedicated reconstruction algorithm

Status

- In-beam tests of the detectors under progress + Simulation of a prototype with 30 detectors
- \Rightarrow Promising results [Jacquet 2020]

	TOF resolution	#PG	# Incident	Sensibility	Intensity
	(FWHM)		protons	(2σ)	
Longitudinal	235 ps	$3 imes 10^4$	10 ⁸	1 mm	Single proton
shift	2.35 ns	$3 imes 10^5$	10 ⁹	2 mm	Nominal
Lateral shift	-	$3 imes 10^5$	10 ⁹	2 mm	intensity

É. Testa

Investigation of the PG modalities with carbon ion beams

• At the moment, most studies and developments have been performed with proton beams

Complementary studies on IVI (Interaction Vertex Imaging)

• Few studies have been performed on this modality [Henriquet 2012, Muraro 2016, Finck 2017...]

PG cross sections measurements

· Clinical applications require precision of the order of a few percents

Ion-range verification

2 Beam lines for cell irradiations

Radiobiogical studies (\Rightarrow Talk of Gersende Alphonse)

- To quantify the cell damage as a function of radiation quality, doses, dose rates...
- To understand the cell response to irradiations

Contraints for biophysical models

- Need for biophysical models to predict biological dose
- Current models in TPS: mMKM (Japan) and LEM I (Europe)
- Use of cell survival curves (relevant outcome for tumor control + complications) to constrain and test the models:
 - Contraints: Mono-energetic beams
 - Tests: Spread-out Bragg Peak (SOBP):
 - Mixed field: several incident ion energies + secondary particles due to nuclear reactions
 - **Biological** dose \neq Linear combination of the contribution of each particle of a given energy
 - \Rightarrow Use of an approximation (introduced by Kanai et al. in TPS) that has to be tested

NanOx model (IP2I): Benchmark with exp. data and 5 other biophysical models

Parameters

Param.	Cell nucleus	Effective lethal function	
	diameter	of nanometric targets	
Input	Cell	\gtrsim 3 cell survival curves	
data	microscopy	1 RX + 2 ions	
		(interm. and high LET ions)	

α coefficients for HSG cell [Monini 2019]

Methods

- Three cell lines irradiated by monoenergetic ions
- 5 other biophysical models: MKM and LEM I–IV

Results

- "NanOx predictions are more often more accurate than the ones issued from the other biophysical models" [Monini 2019]
- Striking ability of the biophysical models to predict all relevant cell survival curves from a small set of experimental data

Importance of GANIL for cell irradiations and positioning in Europe/France

Room	lon	Energy	LET	Range	
		(MeV/u)	$\left(\frac{keV}{\mu m}\right)$	in H_2O	
				(mm)	
	12 C	95 (D1)	28	> 1	
GANIL	C	35 (D1)	63	// 1	
	¹³ C	13.6 (SME)	134	0.8	
	р	ightarrow 15	3	2.5	
ALIO	α	ightarrow 10.75	17	1.5	
	$^{7}\mathrm{Li}$	ightarrow 12.5	55	0.5	
ARRONAX	р	ightarrow 65	1	≫ 1	
	α	ightarrow 16	10	// 1	

- GANIL's carbon ion energies \Rightarrow Sampling of the energy range of interest (with the increase of biological efficiency)
- Unique facility in France and few similar facilities in Europe for cell irradiations with carbon ion beams

100 000 000 LET (keV/um)

Brief history

• 2012-2020: 3 MeV proton beams @ 4 MV VdG accelerator in Lyon \Rightarrow Now in the ALTO platform (IJClab)

Design

- Double scattering foils and collimation system (broad beam $\sim 2~\text{cm}^2,~\pm 3\%$ homogeneity)
- Dose monitoring systems (Faraday cup, quartz, scintillating fibers) + Thermostatic sample-support
- Development of an analytical model of the line to quickly provide for instance the parameters of the line (e.g. foil thicknesses) as a function of ion type and energy

Example of beam lines: The ARRONAX beamline (ARRONAX-IP2I)

Current status

- Cell irradiation with IRRABAT (mono-energetic carbon ion beams in D1)
- Energy: ~ 35 MeV/u (with degrader) $\rightarrow 95$ MeV/u

Possible additional facilities and measurements

- Mono-energetic "low-energy" carbon ion beams @ SME (13.6 MeV/u)
- SOBP @ D1: SOBP of $\sim 1~\text{cm}$ with a distal position at 25 mm

Outcomes

- Cell response + cell survival
- Physico-chemical measurements such as radiolytic yields (model constraints + dosimetry)

Methodology

- 1st meeting in September 2022: directions of GANIL, LARIA, CIMAP, GDR MI2B + M. Beuve (IP2I)
- Consultation of the community
- \Rightarrow Estimate of the beam time request (Go/No-go for a premilinary project)

Thank you for your attention!