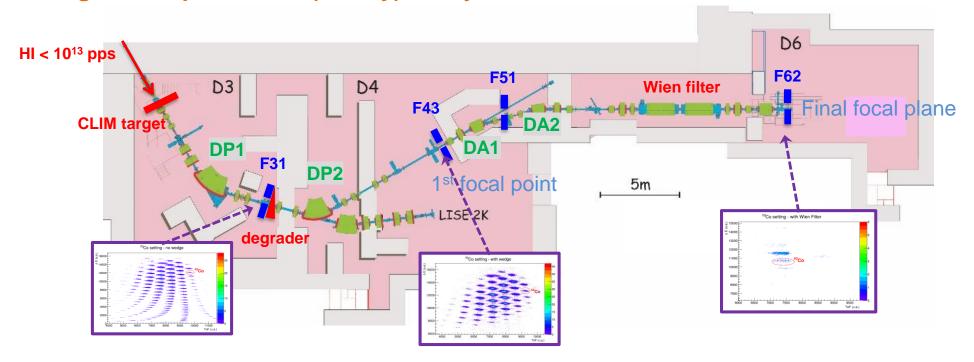


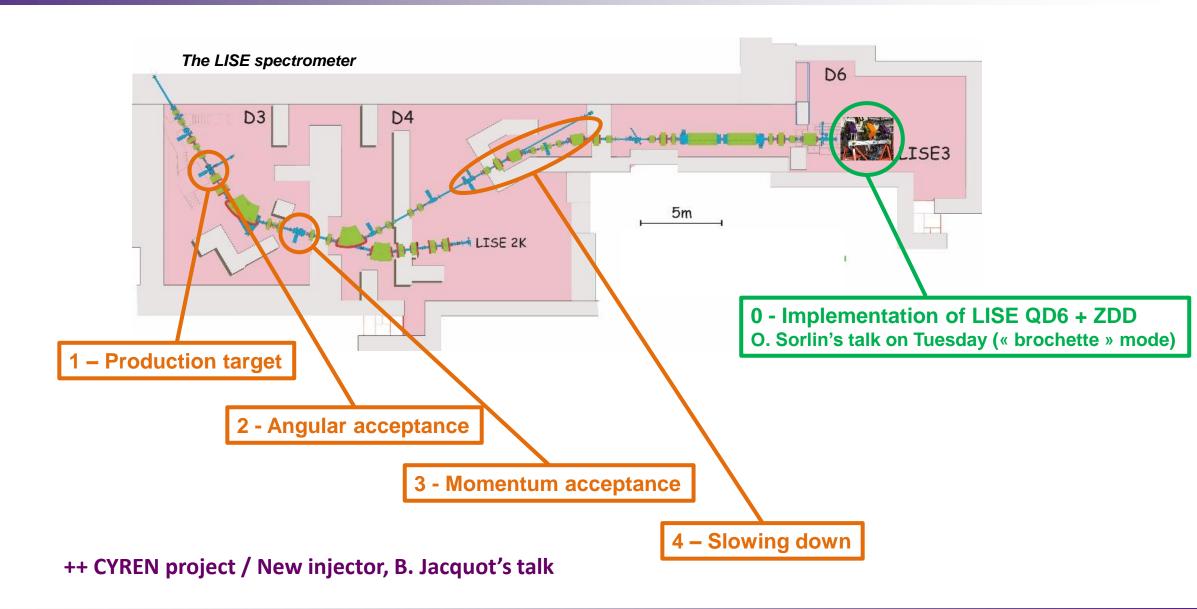
LISE upgrades


J.-C. Thomas, GANIL – on behalf of the LISE team

Inputs from: B. Blank, O. Kamalou, F. Marie-Saillenfest, O. Sorlin and V. Watt-Morel

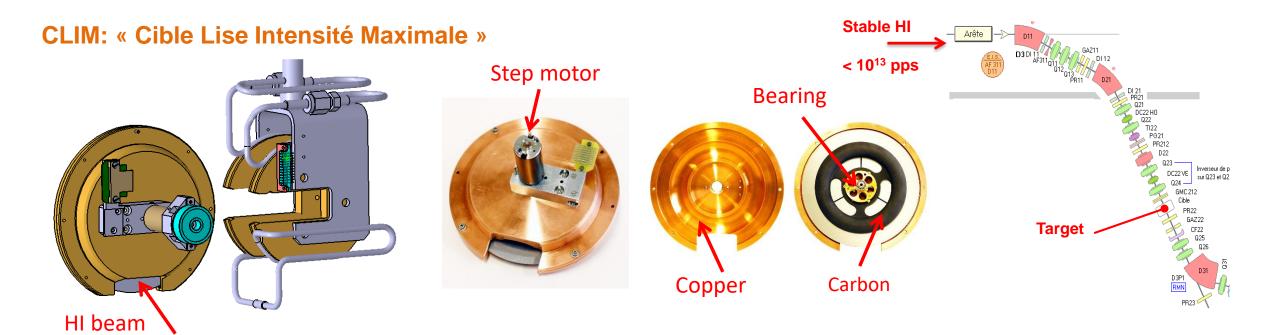
Introduction

LISE: a fragment separator for (mainly) decay and direct reaction studies



Main features ------ No 0° spectrometer after D6

- Beam power loss in the production target: < 800 W
- Angular acceptance: 1 msr (3.5 on LISE2K)
- Δ p/p ≤ ±2.5 %
- Secondary beams at ~30 (light RIBs) to ~50 MeV/u
- B_{o2} ≤ 3.2 T.m (4.3 T.m on LISE 2K)



Possible upgrades

High power production target 1/2

- Specification: up to 800 W beam power deposited e.g. 3.3 kW of ³²S¹⁶⁺ @ 95 MeV/A (i.e. 6 10¹² pps) in 2 mm of Be @ 40° (today: 1.6 kW)
- Inclination up to 40°
- 3 different radial impact positions -> stack of up to 3 targets

High power production target 2/2

Context: recurring issues with the operation of CLIM with Be targets in recent years

- E823-2022 ⁴⁸Ca¹⁹⁺, 60 MeV/u, 500 W: rotation breakdown after ~3 days for ~100 W of beam power deposit
- E796-2020 ²²Ne¹⁰⁺, 60 MeV/u, 900 W: rotation breakdown after ~10 hours for ~250 W of beam power deposit
-

Opportunity 1: Thicker Be targets -> higher yields + lower energy (≤ 30 MeV/u) for light fragments

Opportunity 2: CYREN -> higher beam intensities

=> even higher power deposit

-> CLIM upgrade required to <u>at least</u> reach the original specifications (P_{deposited} ≤ 800 W)

Planned actions:

- **2023**:
 - replacement of the metallic bearings -> ceramic (NFS)
 - design study of a CLIM++ prototype:
 - * online target temperature monitoring
 - * rotation without bearings + CW motors
 - * mechanical modifications -> better power dissipation (+ thermal calculations)
- 2024: offline and online tests + full conception if successful -> operation of CLIM++ in 2025 (objective)

NB: Manpower availability in the CYREN/S3/DESIR/NEWGAIN context? (mechanics, electro-technics, safety,...)

Improved angular acceptance?

Context: current angular acceptance of 1 msr, i.e. ± 18 mrad (± 1°) in X' and Y'

- Typical emittance of RIBs after the production target (3σ emittance of 2.25 mm * 5.25 mrad ~12 mm.mrad):
 - 58 Ni@74.5 MeV/A -> 48 Ni: X' = Y' ~55 mrad (3 σ), i.e., ~37% transmission
 - 22 Ne@60 MeV/A -> 19 N : X' = Y' ~120 mrad (3 σ), i.e., ~9% transmission
 - -> RIB intensity gain of 2.5 (48 Ni) to 4 (19 N) expected for an angular acceptance increased to \pm 40 mrad
- -> Modification of the beam optics before and after the production target (double focalization)?
- -> Modifications of the LISE beam line beyond to ensure a good transmission?
 - A similar study in the past for the replacement of SISSI, using standard quadripôles
 - -> Feasibility at LISE?

B. Jacquot et al., GANIL internal report, 2007

Improved momentum acceptance?

Context: $\Delta p/p$ limited to ± 2.5 %, but most of the time set (F31) to ± 0.6 %

- Due to the difficulty with cocktail beams to identify ions evt/evt (ToF overlap)
- If overcome, would allow taking more RIB intensity (detector limit = 2.10⁵ pps)

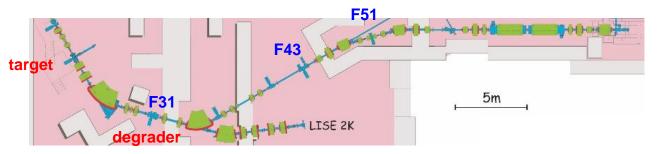
Solution on the n-rich side: position measurement at the 1st dispersive focal plane (F31) with CAVIAR -> A/Q (i.e. B_o) determination evt/evt

Usually impossible on the n-deficient side: strong contamination by less exotic species and detector count rate limitation ~10⁶ pps

ΔΕ%ΤοF

34S

36Si -> 34Si without wedge
F31 = [0,+45] mm

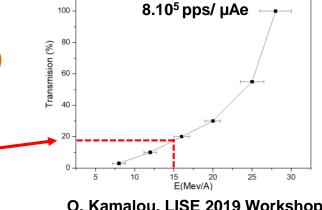

E798-2022 - Id. plot

Unsuccessful attempt to use CAVIAR at the 2nd dispersive focal plane (F51)

Most probably due to the partial overlap of ion trajectories due to the energy degrader (angular straggling)

A combined position measurement in F43 and F51 might help "a bit"

-> to be tested online


Secondary beams slowing down? - 1/3

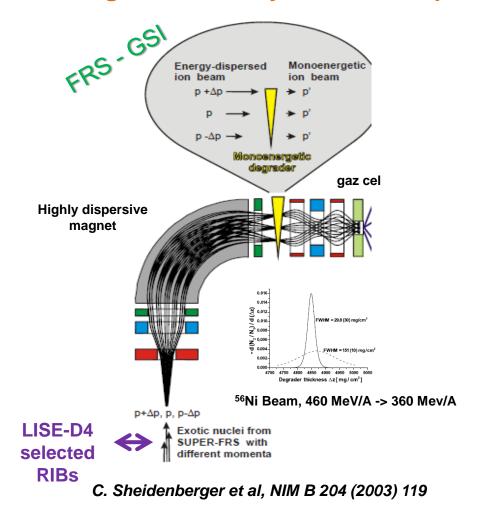
Context: E < 30 MeV/u RIBs for direct reaction studies -> nuclear structure and astrophysics

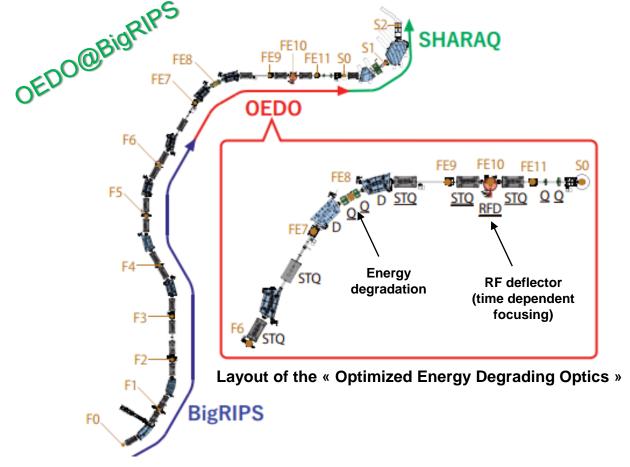
- E628-2014 ¹⁶C(d,p); E748-2017 ^{10,12}Be(d,³He); E796-2021 ²⁰O(d,³He), using ACTAR TPC and MUST2 at 17 to 36 MeV/u
 - requires to lower the primary beam (18O, 22Ne) energy down to 60 MeV/u while 95 MeV/u are available
 - -> secondary beam intensity « loss » ≥ 3
 - requires the use of a RIB slower in F43 (typically 1 mm of Be)

But: it does not work for "high Z" RIBS (losses in the achromatic deviation)

- Slowing-down induced emittance increased (limited angular acceptance)
- Charge state distribution below 30 MeV/u after the energy degrader
 - -> e.g., less than 20 % transmission expected for ⁵⁶Ni²⁸⁺ @ 15 MeV/A

O. Kamalou, LISE 2019 Workshop

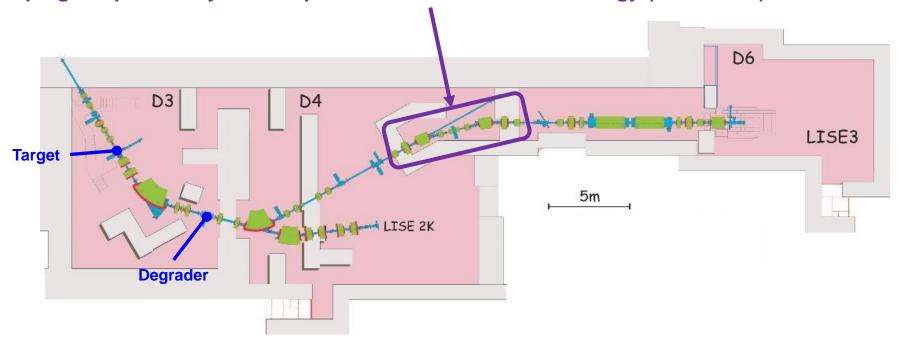

However: improving the LISE ($Z \le 30$) RIB yields in the 10 to 30 MeV/u range would allow performing transfer reactions and (in-)elastic scattering reactions using ²⁵Al,^{24,34}Si, ³⁴Ar, ⁴⁸Cr, ^{56,68}Ni,...



Secondary beams slowing down? - 2/3

LISE upgrade?

-> following RIB slower systems developed elsewhere, based on a monoenergetic degrader

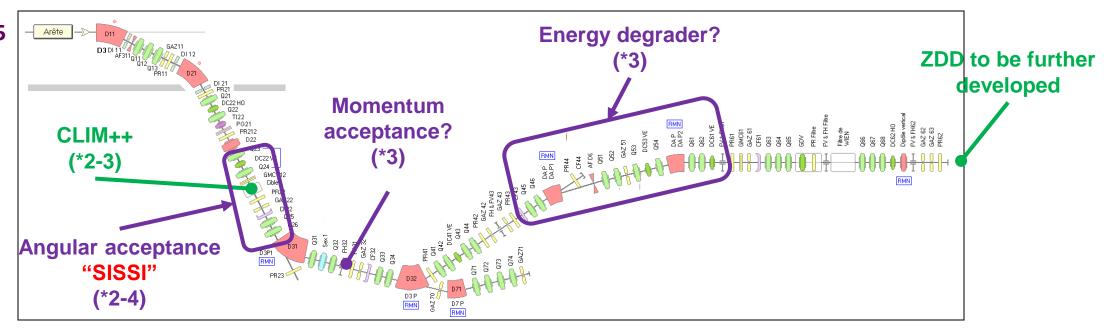


Secondary beams slowing down? - 3/3

LISE upgrade?

- Ideally, to be set in the achromatic deviation
- Keeping the possibility to transport RIBs at their nominal energy (~50 MeV/u) towards D6

-> Beam optics studies required to evaluate the feasibility, manpower and costs


Conclusion about possible LISE Upgrades

LISE main limitations to be overcome

- Beam power losses in the production target < 300 W -> to be addressed in the near future (CLIM++)
- Angular acceptance: 1 msr
- Δ p/p ≤ ±2.5 %
- Secondary beams at ~30 (light RIBs) to ~50 MeV/u

- -> to be studied

CYREN*2-5

RIBs intensity gain > 10-30?

++ Mini-recoil spectrometer project, T. Kurtukian-Nieto talk

Beam optics studies required to evaluate the feasibility, manpower and costs

Thank you for your attention

Thanks to: B. Blank, G. de France, O. Kamalou, F. Marie-Saillenfest, O. Sorlin and V. Watt-Morel

Next update: LISE Workshop, February 2023, GANIL