

New stable beam developments

F.Lemagnen and GCS team

00

Summary:

I- Facility and equipments for the tests

II- Silicon beam production

III - Tungsten beam production

IV: Tellurium beam production

V: Thorium beam production

VI: The First beams tests with HT oven

VII: Conclusion

GCM 2022- F.LEMAGNEN

Oven method

- > A lot of isotopically enriched elements are evaporated by oven (oxyde and metallic form)
- Control of evaporation
- High charges states can be optimized

Metallic beams with MIVOC:

Ni, Fe, Mg, Cr, Ti

For natural elements : Several Commercial compounds can be found.

R&D to obtain synthesis with the isotopically enriched element. => B.GALL's team IPHC- Strasbourg

Several syntheses could be developped to replace the evaporation of element with high vapor pressure (difficulties of evaporation control with oven)

In progress: synthesis of Uranocene First test in March 2022 without success Second test in 2023

Upgrade of MIVOC system (2021-2022)

Goal:

- \Rightarrow Optimization of regulation
- ⇒ Increase conductance between MIVOC chamber and plasma chamber
- \Rightarrow Design to stop the insulator metalization

Results for 4 days before and after upgrade with ⁵⁸Ni¹¹⁺

2021

2022

- \Rightarrow Intensity a little bit higher (20e.µA compare to 15e.µA)
- \Rightarrow More stable beam
- \Rightarrow Reduce tuning interventions along the experiment

II- Silicon beam production

Disjonction BPE

7,4.10-6mbars

<u>Compound:</u> SiO natural <u>Vapor pressure :</u> 10⁻² mbars for 1080° C <u>Interest of using:</u>Several isotopicaly enriched samples with this compound (³⁰SiO, ²⁹SiO)

Consumption: 0,59mg/h of Si (0,89mg/h of SiO) Efficiency: 6%

Example of beams available for physics

 $^{28}\text{Si}\,^{7/14+}$ at 95 MeV/A \rightarrow 0,4 p.µA on the target $^{30}\text{Si}\,^{7/14+}$ at 85 MeV/A \rightarrow 0,4 p.µA on the target

III-Tungsten beam production

¹⁸⁶W²⁴⁺ at 6 MeV/A \rightarrow 11p.nA on the target

IV-Tellurium beam production

Compound: ¹³⁰Te (99,8% enriched sample) Vapor pressure : 10⁻² mbar for 360° C Melting point: 452° C

Consumption: 0,52mg/h of ¹³⁰Te <u>Efficiency:</u> 7,5% ¹³⁰Te²⁰⁺=6e.μA (on the faraday cup after ion

source)

¹³⁰Te ¹⁹⁺ at 8 MeV/A \rightarrow 50p.nA on the target

V-Thorium beam production

Consumption: 0,1mg/h of ²³²Th Efficiency: 8%

> VAMOS experiment proposal: 232 Th $^{30+}$ at 6,1MeV/A \rightarrow 12p.nA on the target

> An other example of intensity 232 Th $^{34+}$ at 8MeV/A \rightarrow 2p.nA on the target

The goal of HT oven development

✓ For Ganil-Cyclotrons in ECR4 source:

 \rightarrow increasing metallic beams intensities which are produced today by sputtering method (²³⁸U, ¹⁸¹Ta,)

Test of vanadium in ECR4-M ion source

- \succ 4 days of continue running with V and 25 days total operation in 2021
- > Oven validated to evaporate Uranium

Test of uranium in ECR4-M ion source

- Yttrium pollution due to evaporation of crucible
- Intensity of Uranium interesting despite the pollution and the lower of ion source 's perform (modification of RF injection with HT oven)
- \succ Next test with UO₂

V-Conclusion

- Four new ions beams availables (Si, W, Te, Th)
- > Carbonyl compounds: New way to produce other metallic elements.
- News organometallic syntheses could be developped depending of physics request.
- ➢ HT oven up to 2000° C is a successful and useable for operation

Thank you for you attention!