

Update of the fast gas cell development for S³-LEB

Vladimir Manea

IJCLab, Orsay, France GANIL, Caen, France

19/10/2022

GCM 2022, Caen, France

1

Outline

FACULTÉ DES SCIENCES D'ORSAY Université de Paris

CNrs

université

- Project summary
- Progress update
 - Preliminary simulation study
 - Simulation method
 - Ion extraction by electrical field and gas flow
 - o Test-bench design study
 - Ion transport and separation
 - Vacuum and mecanical design
- Conclusions and outlook

Project summary: objectives

cnrs

Project summary: objectives

o Ideally both at the same time

FACULTÉ

DIORSAN

universite

DES SCIENCES

cnrs

CUNDED BY

ANR-21-CE31-0001

Université de Paris

Ъ

Project summary: guiding idea

cnrs

Ŵ Université de Paris

. . .

104.2 93.93

Preliminary simulation study: multiphysics

Study of simulation tools and methods.

- Multiphysics problem: COMSOL
 - Laminar gas flow through the cell \checkmark
 - Calculation of static and dynamic electrical fields \checkmark
 - Particle tracing under the action of gas flow (drag) \checkmark and electrical field (drift)
 - ✓—Diffusion effect in high pressures
 - ✓ Plasma processes (ion recombination)

FACULTÉ

DOPSAY

universite

PADIS-SACIAN

DES SCIENCES

cnrs

Ъ

gas velocity field

Velocity magnitude (m/s

200

Preliminary simulation study: multiphysics

□ Study of simulation tools and methods.

- Multiphysics problem: COMSOL
 Laminar gas flow through the cell
 Calculation of static and dynamic electrical fields
 Particle tracing under the action of gas flow (drag)
 - and electrical field (drift)
 - ✓—Diffusion effect in high pressures
 - ✓ Plasma processes (ion recombination)
 - □ Statistical Diffusion Simulation (SDS): Simion
 - ✓—Laminar gas flow through the cell
 - ✓ Calculation of static and dynamic electrical fields
 - Particle tracing under the action of gas flow (drag) and electrical field (drift)
 - ✓ Diffusion effect in high pressures
 - ✓ Plasma processes (ion recombination)

FACULTÉ

université

DES SCIENCES

CNrs

Université de Paris

50 mm

Preliminary simulation study: method

CNIS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Preliminary simulation study: results

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY Université de Paris

Preliminary simulation study:

- o Efficiency and extraction time
- o Time available in the neutralization tube
- Sensitivity of performance to design choices

Simulation work by Wenling Dong

19/10/2022

cnrs

GCM 2022, Caen, France

Test-bench design study

Curved RFQ and miniRFQ from KU Leuven

cnrs

Configuration in Louvain la Neuve, (Kudryavtsev et al., NIMB 297, 2013)

D Requirements:

- Study ion extraction times and neutralization efficiencies
- Perform in-jet laser spectroscopy
- o Mass filtering and identification
- Perform measurements in vacuum

detection

transfer

Test-bench design study

Curved RFQ and miniRFQ from KU Leuven

Test-bench design study: ion guide

- Existing segments in stock
- Simulations with hard-sphere collisions
- □ Simulated total efficiency:
 - ion-guide mode: ~ 70%
 - o buncher mode: ~ 40%
 - o mass filter mode: 5-10%

Test-bench design study: simple gas cell

- □ CF40 cross as gas cell
- □ CF16 tube for neutralization or custom CF40 cross with inner tube
- □ No major disturbance of ions by cross structure

FACULTÉ

D'ORSAY

DES SCIENCES

universite

PADIS-SACI AV

cnrs

W

Test-bench design study: vacuum and mechanics

Commercial suppliers of vacuum pumps contacted, quotations obtained

□ 50 MBq beta source of ⁹⁰Sr purchased (delivery today)

Mechanical design of test bench started (work of Samuel Roset).

cnrs

Conclusions and outlook

- Test-bench definition completed and simulated, with mechanical design ongoing.
- □ Vacuum requirements were studied and pump purchase in progress.
- Postdoc position currently open, new postdoc will be hired beginning of next year.
 - Tests will begin at IJCLab in 2023 (some simple tests already started).

□ Test bench will eventually move to GANIL for coupling to the Ti:sa laser system of the GISELE lab.

DES SCIENCES

universite

Wenling Dong, Serge Franchoo, David Lunney, Enrique Minaya-Ramirez, Samuel Roset

• S3-LEB collaboration

o JETRIS collaboration (HIM, JGU Mainz, GSI)

FACULTÉ

D'ORSAY

université

DES SCIENCES

cnrs

١Å

COMSOL-SIMION comparison

