Neutrinos, Applications and Nuclear Structure and Astrophysics with Total Absorption G-ray Spectroscopy and the (NA)2STARS Project

GCM Meeting 2022 @ Caen

Collaboration
SUBATECH: A. Beloeuvre, E. Bonnet, M. Estienne, M. Fallot, L. Giot, J. Pépin, A. Porta
IFIC Valencia: A. Algora, E. Nacher, B. Rubio, J.-L. Tain
CIEMAT Madrid: D. Cano-Ott
IP2I: C. Ducoin, O. Stézowski
Surrey: W. Gelletly
Intro: What is/Why the TAGS technique?

TAS Spectrometers

Physics Cases & Current limitations of the existing TAS

(NA)^2 STARS
Before the 90's, conventional detection techniques:
- high resolution γ-ray spectroscopy
 - Excellent resolution but efficiency which strongly decreases at high energy
 - Danger of overlooking the existence of β-feeding into the high energy nuclear levels of daughter nuclei (especially with decay schemes with large Q-values)
- Incomplete decay schemes: overestimate of the high-energy part of the FP β spectra
- Phenomenon commonly called « pandemonium effect** » by J. C Hardy in 1977

→ Strong potential bias in nuclear data bases and all their applications
Total absorption γ-ray spectroscopy (TAGS)

- A TAS is a calorimeter
- It contains big crystals covering 4π
- Instead of detecting the individual gamma rays, absorbs the full gamma energy released by the gamma cascades in the β-decay process

First TAS developed in the 70’s but too small detectors to be efficient. Development of the TAGS method efficient and systematic since the 90’s (Greenwood & al.)

Calculation of level energy feeding through the resolution of the inverse problem by deconvolution

- $R_{ij} =$ matrix detector response
- $d_i =$ measured data
- Extract f_j the level feeding by deconvolution

$\begin{align*}
 d_i &= \sum_{j=1}^{m} R_{ij} \cdot f_j \\
 I_i &= \frac{\sum f_i}{\sum f_k}
\end{align*}$

J. L. Tain & D. Cano-Ott, NIMA 571 (2007) 728
Total Absorption γ-ray Spectroscopy (TAGS)

Big criston, $4\pi \Rightarrow$ A TAS is a calorimeter!

Statement of the problem:
Relation between TAS data and the β-intensity distribution:

$$d_i = \sum_j R_{ij} f_j$$

Observable:
β-intensity $\Rightarrow \beta$-strength:
An ideal TAS would give directly the β-intensity I_β which is linked with the β-strength S_β:

$$S_i = \frac{I_i}{f(Q_\beta - E_i)T^{1/2}} \quad [s^{-1}]$$

- Spectrum must be clean
- Response must be accurately known
- Solution of inverse problem must be stable (requires calorimetry)

Monte Carlo simulations + Nuclear statistical model

Deconvolution (Inverse problem) algorithms

Past and Presently used TAS

Berkeley-GSI TAS 1997

Ge detector
(Ø16mm x 10 cm)

Si detectors
(Ø22mm x 1mm)

TAS “Lucrecia”
@ ISOLDE, CERN

Nal large monocrystals

“Rocinante” TAS

Compact 12-fold segmented BaF₂ spectrometer
Low neutron sensitivity
Cascade multiplicity information
Good timing
Resolution 10%@1.33MeV

Rad. beam

• Large 18-fold segmented Nal spectrometer
• Cascade multiplicity information

DTAS (NUSTAR) + AIDA DSSSD
Decay Studies of Fission Products w/ a new Modular Total Absorption Spectrometer (MTAS)

PI’s: K. P. Rykaczewski (ORNL) and R.K. Grzywacz (UTK/ORNL)

A Modular Total Absorption Spectrometer (MTAS) has been constructed from 19 NaI(Tl) scintillator segments. MTAS is designed to perform decay studies with pure beams of neutron-rich nuclei produced in the 238U fission at HRIBF. The total absorption gamma spectra measured with MTAS will be used to derive a true beta-feeding pattern and resulting beta strength function. The studies are important for the verification and development of the microscopic description of neutron-rich matter will be performed as well as applied studies of decay heat released by radioactive nuclei produced in nuclear fuels at power reactors.

MTAS at the HRIBF, January 2011

Status: the MTAS has been manufactured at the SGC (Hiram, OH) and delivered to the HRIBF. The tests done using digital electronics show the energy resolution superior to requested specs. Two PhDs were hired full time, one PhD part time.

Funding: $ 698 K capital + $ 882 K operations (includes $ 815 K salaries) = $ 1580 K

Funds committed/spent : $ 658 K capital and $ 512 K operations = $ 1270 K
Reactor Antineutrinos & Fundamental Physics

- Measurement of the θ_{13} oscillation param by Double Chooz, Daya Bay, Reno
 - Independent computation of the anti-ν spectra using nuclear DB: conversion method

- Sterile neutrino measurement to explain the “reactor anomaly”
 - 6% deficit of the absolute value of the measured flux compared to the best prediction ILL data
 - Shape anomaly (spectral distortion) in the full spectrum (btw 4.8-7.3 MeV)
 - Daya Bay PRL points-out a pb in the converted antineutrino spectra from ^{235}U measured beta spectrum @ILL

- Next generation reactor neutrino experiments like JUNO or background for other multipurpose experiment

- Reactor Monitoring: prediction of antineutrino emission of future reactor designs rely on nuclear data
 - Putting integral beta measurement of ^{235}U of Scheckenbach et al. and sterile neutrinos into question.
 - Growing interest in Summation Method (SM) to calculate anti-ν spectra, but new measurements needed due to Pandemonium problem
Definition: following the shut-down of the chain reaction in a reactor, the nuclear fuel continues to release energy called decay heat.

Evaluation of the reactor safety as well as various economic aspects of nuclear power

Emitters: essentially made up of FP and actinides
- DH: residual power of 6-12% of the nominal power of the reactor just after its shut-down

Estimate through the only predictive method for future reactors: the « summation method »

⇒ Summation of all the fission product and actinide contributions:

\[f(t) = \sum_i (\bar{E}_{\beta,i} + \bar{E}_{\gamma,i}) \lambda_i N_i(t) \]

⇒ Comparisons btw nuclear data & integral measurements show that there remains important discrepancies between data and simulations using different DataBases

⇒ Pandemonium effect + unknown decay schemes

IGISOL@Jyväskylä:
- Proton induced fission ion-guide source
- Mass separator magnet
- Double Penning trap system to clean the beams

2 (segmented) TAS campaigns:

- ROCINANTE (IFIC Valencia/Surrey):
 - 12 BaF$_2$ covering 4π
 - Detection efficiency of a single γ ray >80% (up to 10 MeV)
 - Coupled with a Si detector for β
 - 7 nuclei (4 delayed neutron emitters) measured (6 for DH and 2 for anti-ν)

- DTAS (IFIC Valencia):
 - 18 NaI(Tl) crystals of 15cm × 15cm × 25 cm
 - Individual crystal resolutions: 7-8%
 - Total efficiency: 80-90%
 - Coupled with plastic scintillator for β
 - 12 nuclei for anti-ν measured & 11 for DH
30 Measured Nuclei

2014 campaign (23 nuclei):

Table from IAEA Report INDC(NDS) 0676 (2015)

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Priority U/Pu</th>
<th>Priority Th/U</th>
<th>Priority $\bar{\nu}_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>95Rb</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>95Sr</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>95Y</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>96gsY</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>96mY</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>99Y</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>99Zr</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>98gsNb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>98mNb</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100gsNb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100mNb</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>102gsNb</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>102mNb</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>103Tc</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>103Mo</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>108Tc</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>108Mo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>137Xe</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>138Xe</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>137Cs</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>138Cs</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>140Cs</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>142Cs</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

V. Guadilla’s PhD thesis (9 nuclei Valencia)
L. Le Meur’s PhD thesis and J. – A. Briz-Monago’s Postdoc (3 nuclei Subatech)
V. Guadilla’s Postdoc (5 nuclei Subatech)
A. Beloeuvre’s PhD (1 nucleus Subatech, waiting for planned TAGS experiment@Jyväskylä)
Reactor Antineutrinos & Fundamental Physics

Measurement of the θ_{13} oscillation param by

- Double Chooz, Daya Bay, Reno

| Independent computation of the anti-
| n
| spectra using nuclear DB: conversion method

- Sterile neutrino measurement to explain the
| "reactor anomaly" 6% deficit of the absolute value of the measured flux compared to the best prediction ILL data
| Shape anomaly unexplained

- Daya Bay PRL points out a pb in the converted antineutrino spectra from ^{235}U measured beta spectrum @ILL

- Next generation reactor neutrino experiments like JUNO or background for other multipurpose

⇒ Several Focusses for Future:

⇒ above 4.5 MeV « shape anomaly », shorter-lived nuclei ($T_{1/2}$ from hours-minutes to a few tens of ms), mostly in the light fission products, a few in the heavy ones

⇒ Isomer decays play a major role in the high energy part of the spectrum

⇒ Need for more precise predictions for short times after fission: shorter-lived nuclei (CNNS experiments)

⇒ Better understanding of the antineutrino spectra for the future neutrino exp. (ex. JUNO-TAO)

Reactor Decay Heat (DH)

- TAGS results from the last decade have improved the quality of the predictions for reactor decay heat.
- Still some Pandemonium candidates in the priority lists.
- Still unexplained discrepancies especially for ^{235}U thermal fission pulse.
- Still need improved predictions for future reactor designs & fuels.
- Need to better control uncertainties on decay heat at short times.

\Rightarrow Comparisons btw nuclear data & integral measurements show that there remains important discrepancies.

\Rightarrow Several Focusses for Future:
- Focus on shorter-lived contributors: already existing lists (IAEA reports)
- New lists to be established for innovative reactor designs (on-going).

Calc. By L. Giot (Subatech)
New TAGS Campaign @ Jyväskylä 2022

Nantes-Valencia proposal, Very successful experiment, Rocinante Spectrometer coupled to the FASTER DAQ by the Subatech team
17 nuclei measured with TAGS
TAGS experiments for nuclear astrophysics

R-process:
- β-decay of delayed neutron emitters as a “surrogate” of the (n,γ) reaction: enhanced Γγ measured in some nuclei impacting (n,γ) cross sections => general trend?
- Probe the presence of low-lying collective modes with β-decay as it impacts the r-process paths

Core-collapse SNe: Study the electron capture properties of targetted nuclei which play an important role in core-collapse supernovae

44Ti production rate: probes the innermost shells of the SN explosion: measure the γ emission from unbound proton states in key nuclei to constrain reaction rates playing a role in the 44Ti abundance (« surrogate method »)

- Measure the beta strength of rp-process waiting points

P-process: measure (p,γ) and (α,γ) key cross-sections
Our understanding of the r-process nucleosynthesis, i.e. the origin of about half of the nuclei heavier than Fe in the Universe is considered as one of the top 11 questions in Physics and Astronomy ("Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century": 2003, National research council of the national academies, USA)

Kilonova predicted by astronuclear physicists Metzger et al. in 2010 !!!

« Both the light curves and spectra closely **resemble predictions for a ‘kilonova’ a transient powered by radioactive decay of heavy nuclei and isotopes synthesized through the r-process in the merger ejecta. This is the first clear demonstration that r-process nucleosynthesis occurs in neutron star binary mergers**, and although this is a single event, the inferred ejecta mass and event rate suggest that such mergers could be the dominant r-process site. »
Total Absorption Spectroscopy of β-delayed neutron emitters

<table>
<thead>
<tr>
<th>Isotope</th>
<th>P_n (%)</th>
<th>S_n (MeV)</th>
<th>Q_β (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>87Br</td>
<td>2.60(4)</td>
<td>5.5152(3)</td>
<td>6.818(3)</td>
</tr>
<tr>
<td>88Br</td>
<td>6.58(18)</td>
<td>7.054(3)</td>
<td>8.975(4)</td>
</tr>
<tr>
<td>93Rb</td>
<td>1.39(7)</td>
<td>5.290(9)</td>
<td>7.466(9)</td>
</tr>
<tr>
<td>94Rb</td>
<td>10.18(24)</td>
<td>6.828(10)</td>
<td>10.281(8)</td>
</tr>
<tr>
<td>95Rb</td>
<td>8.7(3)</td>
<td>4.348(7)</td>
<td>9.228(21)</td>
</tr>
<tr>
<td>137I</td>
<td>7.14(23)</td>
<td>4.0256(1)</td>
<td>6.027(9)</td>
</tr>
<tr>
<td>138I</td>
<td>5.56(22)</td>
<td>5.660(3)</td>
<td>7.992(7)</td>
</tr>
</tbody>
</table>
β-decay of delayed neutron emitters as a “surrogate” of the
\((n,y)\) reaction

J.L. Tain et al., PRL 115, 062502 (2015)

Table 7. \(P_\gamma\) obtained from our measurements [24,25] in comparison with the \(P_n\) values of the decays. \(P_\gamma\) is defined as the gamma emission probability above the \(S_n\) value (in analogy to \(P_n\)). The values are given in % (see the text for more details).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>(P_\gamma) (TAGS)</th>
<th>(P_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{87})Br</td>
<td>3.50(^{+0.49}_{-0.40})</td>
<td>2.60(4)</td>
</tr>
<tr>
<td>(^{88})Br</td>
<td>1.59(^{+0.27}_{-0.22})</td>
<td>6.4(6)</td>
</tr>
<tr>
<td>(^{94})Rb</td>
<td>0.53(^{+0.33}_{-0.22})</td>
<td>10.18(24)</td>
</tr>
<tr>
<td>(^{95})Rb</td>
<td>2.92(^{+0.97}_{-0.83})</td>
<td>8.7(3)</td>
</tr>
<tr>
<td>(^{137})I</td>
<td>9.25(^{+1.84}_{-2.23})</td>
<td>7.14(23)</td>
</tr>
</tbody>
</table>

\(^{94}\)Rb: γ-ray branching one order of magnitude higher than H-F calculation with standard parameters.

⇒ Such an enhancement of \(\Gamma_\gamma\) will have a similar effect on the \((n,y)\) cross section: impact on \(r\)-process abundance

⇒ Experiment done using the Total Absorption γ-ray Spectroscopy (TAGS) technique (calorimetry), the most suited for detection of high energy gamma rays

⇒ Very interesting as \((n,y)\) reaction rates are very hard to measure on such exotic nuclei
Studying collective modes in exotic nuclei is a challenge, use the β-decay as a probe for low-lying collective modes in the daughter nucleus would allow to:

- Go further from the stability than using reactions
 - a real opportunity to study their presence systematically when spins/parities are favorable
- Complement other techniques such as (g,g'), (a,a'), etc...
- Get almost background free data
Cross section measurements for p-process nucleosynthesis

Scientific motivation

p-nuclei = rare, stable proton-rich isotopes
 ~ 35 nuclei from 74Se to 196Hg

Produced in **explosive nucleosynthesis** (supernovae)

Reaction network:
 ~ 2000 nuclei (mostly exotic), 20 000 reactions
 Reaction cross sections from **statistical model**

Experimental data needed
 to constrain the **statistical parameters**
 (optical potentials, level densities, gamma strength)

Photo-disintegrations (γ,n), (γ,p), (γ,α)
Radiative captures (p,γ), (α,γ)

Astrophysical energy range:
 deep below Coulomb barrier
 challenge of very low cross sections (below 1 μb)

Courtesy of C. Ducoin, O. Stezowski
Cross section measurements for p-process nucleosynthesis

Experimental project for gamma-summing at NFS

p-process collaboration in France: IP2I-Lyon, GANIL, LPC-Caen, IJCLab, Subatech, IPHC, in Europe: Demokritos, Universities of Bruxelles (ULB), Jyväskylä, Huelva, Surrey, Lisbon, and beyond: iThemba

Objective: use high-intensity beams to access low cross sections for radiative captures (p,γ), (α,γ) at astrophysical energy

Required beams: protons 1-3 MeV, alphas 8-12 MeV

Measurement techniques:
- *activation* when allowed by lifetime of reaction product
- in many cases, *in-beam* measurements are needed:
 - gamma angular distribution (spectrometers)
 - or gamma summing (calorimeter)

New approach for in-beam measurements: Gamma summing with *segmented calorimeter*

=> information on gamma cascade *multiplicity*

=> better knowledge of *sum peak efficiency*

Needs concerning targets:
- *manufacturing of thin targets of enriched isotopes* in mass range A ~ 100-200
- *solutions for sustaining high intensity beams*
Study of core-collapse supernovae

masses around \(^{78}\text{Ni} (\text{JYFL})\)

Core-Collapse Supernovae simulation :

One of the BIG astro challenges

Present best 3D hydro simulations do not yet produce satisfactory CCSN explosion =>

Microphysics is essential!

Key observables

- EC rates : GT response (\(\beta\)-decay, charge exchange)
- Nuclear mass
- EoS

Key regions of the nuclear chart

- Around \(^{78}\text{Ni} (N=50)\)
- Around \(^{128}\text{Pd} (N=82)\)

Electron-capture rates

- EC : crucial all along the life of a star (particularly in massive stars \(\rightarrow\) CCSN!)
- but: model uncertainties (especially in \(n\)-rich nuclei!)

Position of the shock front is extremely sensitive to the nuclei EC rates

Credit: NASA

Sullivan et al.

ArXiV:1508.0734

B. Bastin, A. Kankainen (experiment) / F. Gulminelli, A. Fantina (theory) et al.
Sequence of rapid proton captures and β^+ decays near the proton dripline

Some complementary measurements to the existing proposals and LoI @ ISOLDE and Riken could be proposed for the rp-process

@SPIRAL1 + S^3-LEB(DESIR): S^3 will provide access to the most exotic nuclei + refractory elements
Quest for resonances in the reaction $^{45}\text{V}(p,\gamma)^{46}\text{Cr}$

44Ti Nucleosynthesis

- ^{44}Ti is produced in type II supernovae (SN II) mechanism: α-rich freeze-out. Shock-wave after core-collapse reaches the α-rich region in the cooling phase, $1 < T_9 < 5$

- ^{44}Ti ($T_{1/2}=59$ y) is a cosmic gamma ray emitter (67.9, 78.4, 1157 keV). Observed by COMPTEL and INTEGRAL satellites

- ^{44}Ti ejecta is a sensitive probe for core-collapse models

- ^{44}Ti main responsible for ^{44}Ca solar system abund.

Abundance of produced ^{44}Ti is very sensitive to the reaction rate of $^{45}\text{V}(p,\gamma)$ (not known exp.)

Table 5

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{44}\text{Ti}(x, p)^{47}\text{V}$</td>
<td>-0.394</td>
</tr>
<tr>
<td>$^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$</td>
<td>+0.137</td>
</tr>
<tr>
<td>$^{45}\text{V}(p, \gamma)^{46}\text{Cr}$</td>
<td>-0.361</td>
</tr>
<tr>
<td>$^{36}\text{Ar}(\alpha, \gamma)^{40}\text{Ca}$</td>
<td>+0.008</td>
</tr>
<tr>
<td>$^{44}\text{Ti}(p, \gamma)^{45}\text{V}$</td>
<td>-0.005</td>
</tr>
<tr>
<td>$^{52}\text{Ni}(n, \gamma)^{56}\text{Cu}$</td>
<td>+0.002</td>
</tr>
<tr>
<td>$^{56}\text{Fe}(n, \gamma)^{57}\text{Ni}$</td>
<td>+0.002</td>
</tr>
</tbody>
</table>

a Order of importance of reactions producing ^{44}Ti at $\eta=0$ according to the slope of $X^{(44}\text{Ti)}$ near the standard reaction rates.

Spectroscopy of key nuclei in astrophysics:

Experimental approaches: TAGS technique to measure the γ-rays emitted above the p emission threshold, constraining then the (p, γ) cross-section @ LISE/GANIL, and then with Spiral1/S3

Beta-delayed proton emission studied with ACTAR TPC & EXOGAM
Oblate-prolate competition

N~Z nuclei with A~70-80

Lucrecia @ ISOLDE

Madrid, Strasbourg, Surrey, Valencia

E.Nácher
PRL 92 (2004) 232501

(*) P.Sarriguren et al. NPA 658 (1999) 13
TAGS & B(GT)

- On the n-rich side and on the n-deficient side

N~Z nuclei with A~70-80

Lucrecia @ ISOLDE

Madrid, Strasbourg, Surrey, Valencia

On the n-rich side and on the n-deficient side

N~Z nuclei with A~70-80

Lucrecia @ ISOLDE

Madrid, Strasbourg, Surrey, Valencia

On the n-rich side and on the n-deficient side

N~Z nuclei with A~70-80

Lucrecia @ ISOLDE

Madrid, Strasbourg, Surrey, Valencia
Beta Decay and the N = 82 Waiting Point nuclei

Beta strength measurements around the doubly-magic neutron-rich ^{78}Ni

Beta strength measurements in the ^{100}Sn region

A. Algora, B. Rubio, J.L. Taín, J. Agramunt, C. Domingo, S. Origo
IFIC-CSIC Valencia, Spain
B. Gomez-Hornillos, F. Calviño, G. Cortes
INTE-DFEN-UPC, Barcelona, Spain
D. Cano-Ott, T. Martinez
CIEMAT Madrid, Spain
W. Gelletly, Z. Podolyak, P. H. Regan
Univ. of Surrey, Guildford, UK
T. Kurtukian-Nieto, B. Blank
CENBG, Bordeaux, France
L. Caceres
GANIL, France
A. Jungclaus
IEM-CSIC Madrid Spain
Y. Fujita

Courtesy Berta Rubio
Outlooks

Existing TAGS measurements
Already proposed TAGS measurements
Or LoI’s

- Nuclear structure
- Astrophysics: r-process
- Fundamental physics
- Reactor physics, Decay Heat
- Reactor antineutrino spectra
TAGS experimental challenges

TAGS technique needs some minimal knowledge on the daughter nuclei. NaI crystals are very sensitive to neutrons. BaF$_2$ are less sensitive but have a poor energy resolution.

⇒ Antineutrino, Decay Heat, R-process: **shorter-lived contributors**

⇒ **Shorter-lived nuclei means:** n-richer nuclei => β-n branch = n contamination and knowledge of Pn, less nuclear structure knowledge on decay daughters

⇒ **On the n-deficient side:** more exotic means less nuclear structure knowledge on decay daughters

⇒ **P-process:** TAGS = γ-summing technique, actual limitations come from the uncertainty on the sum peak

- Measure the beta strength of rp-process waiting points
- P-process: measure (p,g) and (a,g) key cross-sections
Addition of 16 2” x 2” x 4” LaBr₃:Ce modules between the two halves of the DTAS

⇒ large efficiency combined with the very good energy resolution and timing of the LaBr₃ : solution to the study of more exotic nuclei with the TAGS technique, n/γ discrimination with TOF

⇒ higher segmentation: γ-γ coincidences and angular correlations of specific γ-ray cascades: study of more exotic nuclei or cross-section measurements.

⇒ knowledge of γ-cascade multiplicity = good control of the uncertainty on the sum peak efficiency

⇒ Neutrinos, Applications and Nuclear Astrophysics with a Segmented Total Absorption with higher Resolution Spectrometer:

A combination of calorimetric and spectroscopic tools for beta decay and in-beam measurements

An unprecedented Combination of calorimetric and spectroscopic tools for beta decay and in-beam measurements

\[\Rightarrow \text{The LaBr}_3 \text{ ring could also be used to complement experimental setups. A test on the Falstaff experiment @ NFS with 2 LaBr3 modules from Subatech will be performed @ GANIL next weeks} \]
Conclusion and Outlooks

- TAGS experiments are complementary to high-resolution γ-ray spectroscopy

- Particularly well adapted to measure high energy γ-rays and B(GT) avoiding the Pandemonium effect

- The TAGS collaboration in Europe has a large physics program spanning both n-rich and n-deficient nuclei, performed presently at IGISOL Jyväskylä, ISOLDE Cern, GSI and Riken

- Part of this program could be performed at GANIL in the future: existing Lols @ DESIR + new experiments that could be proposed in the near future on the above-described physics cases

- The (NA)2STARS project would allow studying more exotic nuclei with the TAGS technique and make in-beam measurements of key cross-sections for astrophysics with the γ-summing method
E-Shape (Nantes-Valencia-Surrey) 2022

- E-Shape campaign @IGISOL (Jyväskylä) in Jan. 2022:

 E-Shape Motivations: measure electron spectral shapes from First-Forbidden β-decays for Reactor Antineutrinos and Nuclear Structure and Astrophysics

Huge technical involvement by Subatech (Technical Services and SEN team): Mechanics + Electronics (Faster DAQ) very successful

2 PhD students:
G. Alcala (Valencia) and A. Beloeuvre (Nantes)

Coming Next: 1 E-Shape experiment@ Jyväskylä in 2023 (1 PhD funding)
TAGS COLLABORATION

U. Surrey: W. Gelletly

CIEMAT Madrid: T. Martinez, L.M. Fraile, V. Vedia, E. Nacher

IPN Orsay: M. Lebois, J. Wilson

BNL New-York: A. Sonzogni

Istanbul Univ.: E. Ganioglu

Special thanks to the young researchers working in the project:

Discussions with and slides from: A. Algora, J. L. Tain, B. Rubio, S. Cormon, A. Cucoanes, M. Estienne, M. Fallot, L. Giot, A. Porta, T. Shiba, …are acknowledged
THANK YOU
On-going paper with the IAEA: calculation of impact of all published TAGS data (including Europe and US)

Total Absorption γ-ray Spectroscopy of the β decays of $^{96g_s,m}_M Y$,

$^{96g_s}_M Y$ (0-) priority 1 for Antineutrinos
$^{96m}_M Y$ (8+) priority 1 for Decay Heat for Th/U fuel

\Rightarrow Clear Pandemonium effect in the $^{96m}_M Y$
THE HIGH RESOLUTION METHOD

Six EUROBAI I CLUSTER detectors in close geometry.
\(S_\beta (10^{-6} \text{s}^{-1} \text{keV}^{-1}) \)

\[S_\beta^{HR} = 0.4 \]

\(\beta \)-strength

TAS vs CLUSTERCUBE

\(150 \text{Ho} \beta \)-decay

1064 \(\gamma \)-rays
295 levels

\[\frac{S_\beta^{HR}}{S_\beta^{TAS}} = 0.4 \]

A. Algora, B. Rubio et al. PRC 50 (2002)
Experimental setup at Jyväskylä (142Cs, 99Y, 138I, 96,96mY)

- **DTAS** = 18 crystals of NaI(Tl)
 - \sim90% efficiency for a 1 MeV gamma
 - $\Delta E/E \sim 5\%$ at 1.3 MeV
- **β detector** = plastic detector
 - In coincidence with $\gamma \rightarrow$ suppression of the background
 - 30% detection efficiency
- **HPGe detector**
 - Allow identification of possible contaminants coming from the decay chain

Why Jyväskylä IGISOL-4 facility?

- Because of the JYFLTRAP, a double Penning Trap
- Mass resolution of $\delta m/m \sim 10^{-6}$
- A very pure beam is needed

L. Le Meur’s PhD