

n

Is there a dark decay of neutrons in ⁶He?

DESIR like experiment with SPIRAL1 beam (a) LIRAT

E819S_20 Collaboration

Hervé Savajols, <u>Marius Le Joubioux</u>, Dieter Ackermann, Lucia Caceres, Pierre Delahaye, Bertrand Jacquot,, Xavier Ledoux, Nathalie Lecesne, Julien Piot, Abhilasha Singha, Christelle Stodel, Jean-Charles Thomas (GANIL)
Yu. E. Penionzhkevich, Sergey Lukyanov, Vladimir Smirnov, Dimitry Testov (JINR Dubna) Xavier Fléchard, Etienne Liénard, Dominique Durand, Oscar Naviliat (LPC Caen) Serge Franchoo, Matthieu Lebois, Damien Thisse, David Verney (IJCLab) Wolfgang Mittig (NSCL/FRIB) Francois Didierjean, A Grillet (IPHC)

How does our universe work?

Credit : Ruth Pöttgen

We know quite a lot but there is much more that we don't understand?

Dark Energy 70%

Ordinary Matter 5%

Dataset Calacy Leaned by Cause Abalt 2211 / IRF WPR + US

Based on **gravitational** effects → observed on vastly different scales (single galaxies up to entire Universe)

Dark Matter

25%

How nuclear physics can help?

UNRESOLVED DIFFERENCES

Mysteriously, neutrons in a beam live several seconds longer on average than do those trapped in a vacuum bottle.

$$\tau_n^{beam} = 888.1 \pm 2.0 s$$

Counting remaining neutrons :

$$\tau_n^{bottle} = 879.5 \pm 0.4 s$$

Discrepancy
$$\frac{\Delta \tau_n}{\tau_n} \approx 1\%$$

Remaining 1%

- Experimental bias
- \succ n → SM particles (other than *p*) : excluded
- ▶ n → dark matter : Fornal and Grinstein, PRL120(2018)191801
 - n → dark particle(s) + SM particle(s) : e⁺e⁻ UCNA ILL (*PRC 97, 052501 (2018*)), PERKEO II (*PRL 112, 222503 (2019*) or photon UCN Los Alamos (*PRL121, 022505 (2018*)) not seen so far
 - $n \rightarrow dark particle(s)$

x Decay of quasi-free neutrons in nuclei

Can neutrons loosely bind in nuclei decay into dark matter?

Nuclear Physics bound to fix energy constrains : (Pfutzner and Riisager, PRC 97, 042501(R) (2018))

- Lighter than neutron to decay
- Greater than the difference of mass between ${}^{9}Be$ and ${}^{8}Be$ (2x⁴He) as ${}^{9}Be$ is stable

 $\rightarrow 937.992 \; \text{MeV} < m\chi \; < M_n - S_n$

• List of nuclei satisfying this condition : ⁶He, ¹¹Li, ¹¹Be, ¹⁵C and ¹⁷C

- ⁶He can only decay with an emitted neutron if we consider a dark decay channel : unique signature !
- Estimated branching ratio upper limit : $B\chi = 1.2 \times 10^{-5}$, using the assumptions $B\chi = T_{1/2} / T_{1/2}^{n\chi}$

Beam : ⁶He¹⁺ SPIRAL1 at low energy (LIRAT) and at the maximum intensity $\approx 2 \times 10^8$ pps (World record !) **Experimental technique :** detection of an excess of neutrons with the apparent lifetime of ⁶He (T_{1/2} = 0.8s)

- Silicon detector in the LIRAT line to asses the rate of ions
- Particles are implanted in a thin aluminium catcher at the center of TETRA (Beam on / Beam Off)
- 4π neutron detector TETRA : ³He counters calibrated with a ²⁵²Cf source
- γ-ray detector : Germanium semiconductor calibrated with a ¹⁵²Eu source
- β-particle detector : Small solid angle plastic scintillator calibrated with a ⁹⁰Sr and a ³⁶Cl source

Beam : ⁸He to benchmark the experimental setup (β -decay & β n-decay) with intensity $\approx 4.10^5$ pps

Detection efficiency of TETRA

We placed two set of gates in order to discriminate the neutron detection part from the piedestal and y detection part

- ε = 54.31±5.89 % using Gates 1
 with all counters
- ε = 43.26±4.69 % using Gates 1 and excluding some problematic counters
- ε = 23.58±2.56 % using Gates 2 and excluding the same counters

The high uncertainties come from the uncertainty on the ²⁵²Cf source activity (~10%)

^χ ⁸He data analysis : Lifetime

n

New branching ration value in β n-decay to ⁷Li at 477.6 keV

Implanted rate in the catcher

New value at **7.08±0.09 %** instead of 5.1 % *M.J.G. Borge et al., Nucl. Phys. A Vol 560, 664-676 (1993)*

Correlation between the primary ¹³C beam intensity and the ⁸He implanted rate obtained with the various observables

 \rightarrow ⁶He implanted rate (Si Lirat, Plastic and TI)

laboratoire commun CEA/DSM SPI2 CNRS/IN2P3

Goal : Set a stringent upper limit of the dark decay branching ratio $Br(\chi) = N_n / (N_{6He} \times \epsilon_{TETRA})$

- \rightarrow Asses the total number of implanted ⁶He
- → Asses the right number of detected neutrons : NOT an easy task (systematic errors, spurious effects that mimic a dark decay) Thanks to the LPC Team
 n in TETRA

Next episode coming soon !

Thank you for your attention !

⁶He quasi free neutron decay : unique signature

⁶He cannot decay by neutron except through dark decay

If a dark decay of one neutron of the ⁶He halo occurs, the allowed energy window : $M\chi < Mn - 975.45 \text{ keV}$ Probe the optimum dark matter mass range : 937.992 MeV < $M\chi < 938.589 \text{ MeV}$

The half-life of ⁶He, $T_{1/2} = 807$ ms, leads to the estimated branching ratio of $B\chi = 1.2 \times 10^{-5}$, using the assumptions $B\chi = T_{1/2} / T_{1/2}^{n\chi}$ (*Pfutzner and Riisager, PRC 97, 042501(R) (2018)*) with BR $\chi = 1\%$

Recent analysis (*D. Dubbers Phys. Lett. B 791, 6 (2019)*) from new beta asymmetry measurements (PERKO III) : SM prediction is closest to the bottle experiment and set a limit below what is required to explain the neutron lifetime discrepancy

 \rightarrow Calculated BR χ < 0,3 % \rightarrow estimated branching ratio in ⁶He of **B** χ = **10**⁻⁶

What is the upper limit for loosely neutron decay - We should do better than 0.3%