

Status & first results of GPIB & PIPERADE beamline

Audric HUSSON, LP2i Bordeaux, GANIL Community Meeting 2022,

Context

Connection to SPIRAL1

GPIB Cooler-Buncher **FEBIAD** source Produce alkaline RFQ trap filled with He gas (surface ionization) - cooling via gas interaction - bunching Main species – ³⁹K + other alkalines 29.9 kV Acceleration: 30keV

GPIB in the Hall de Montage before installation on the PIPERADE beamline

GPIB Cooler-Buncher (chiller-gatherer)

10

RadioFrequency Quadrupole trap (linear Paul trap)

Ion confined :

- radially : RF oscillating potential (saddle shape potential)
- longitudinal : arbitrary potential slope potential well at the extraction

Objectives :

- Cool down the ion beam emittance reduction down to 10π mm.mrad @ 3keV 4.5π mm.mrad @ 30keV
- Make bunches/packets of ions with specific characteristics bunch length < 1µs energy spread < 1eV

RadioFrequency Quadrupole trap (linear Paul trap)

Two operation modes :

- continuous beam (CW)

 \rightarrow transmission

 \rightarrow (later) emittance – spot size / divergence

RadioFrequency Quadrupole trap (linear Paul trap)

Two operation modes :

- continuous beam (CW)

 \rightarrow transmission

→ (later) emittance – spot size / divergence

- bunch(ing) mode \rightarrow bunch length \rightarrow energy spread

RadioFrequency Quadrupole trap (linear Paul trap)

Two operation modes :

- continuous beam (CW)

 \rightarrow transmission

 \rightarrow (later) emittance – spot size / divergence

bunch(ing) mode
→ bunch length
→ energy spread

Detectors :

Faraday cup → beam current
MCP (micro-channel plate)
+ retarding grid

 \rightarrow detect bunch profile over time

 \rightarrow scan the energy

 \rightarrow longitudinal emittance

15

GPIB Cooler-Buncher – First results

CW mode:

Intensity up to 10¹⁰pps (~1nA) Transmission with K⁺ions : 80% @ 30 keV

routinely 70-75 % @ 3 keV

Record transmission obtained after careful Tuning - 92% @ 3keV

Bunch mode:

<u>Rep. Rate</u>: 1 – 100 Hz

Measured bunch length :

- Extraction 30keV : ~ 1-2 μs FWHM

- Extraction 3keV : 0.7µs FWHM

→ Extraction potential to be optimized for bunch compression

Norm

GPIB Cooler-Buncher – First results

CW mode:

Intensity up to 10^spps (~20pA)

Transmission:

80% @ 30 keV 92% @ 3keV

Bunch mode:

<u>Rep. Rate</u>: 1 – 100 Hz

Measured bunch length :

- Extraction 30keV : ~ 1-2 μs FWHM
- Extraction 3keV : 0.7 μs FWHM
- \rightarrow Extraction potential to be optimized for bunch compression

Technical limitation in the energy spread measurement : 6 eV for 10ms cooling

→ Cooling sequence/time to be optimized
→ Technical developments required

90° electrostatic deflector

90° electrostatic deflector

Test bench for the 90° electrostatic deflector

- Characterize the 90° deflector
- CW mode :
 - Energy measurement Faraday cup
 - Transverse emittance measurement → optimization & characterization of an emittance-meter for GPIB
- Bunch mode :
 - Test the transmission measurement with a low number of ions,
 - · Optimize the energy dispersion measurement,
 - Guarantee feasibility of TOF/energy measurement over all intensity range

High intensity (>10⁴ evts) \rightarrow CF with trans-impedance FEMTO Low intensity (<1000 evts) \rightarrow MCP

Properties with medium intensity hard to evaluate ???

90° electrostatic deflector

GPIB summary

Extraction					_						
			CW beam								
30 keV	Transn Iow > 9	nission high 3%	Transverse emittance low high estimation: ~3π mm.mrad to be repeated	e Energy dispersion low high Not accessible HRS coupling ?	Low = low intensity High = high intensity (10 ⁸ ions/bunch or CW 100pA						
		Bunched beam									
	Transmission		Transverse emittance	Energy dispersion	TOF distribution		1				
	low	high	low high	low high	low	high					
	×	×	should come soon	Not accessible	< 10 μ s	×					
			need further developments	HRS coupling ?		RF limit	l				

	CW beam						
Transr	Transmission		emittance	Energy dispersion			
low	high	low	high	low	high		
70 -	80 %	coming soon		×	×		
(elements to	improve it)	EMT limit					

3 keV

Bunched beam										
Tra	Transmission		Transverse emittance		Energy dispersion		TOF distribution			
low		high	low	high	low	high	low	high		
×		x	should come soon		< 6 eV	?	< 1 µs	< 10 µs		
			need further developments				RF limit - to be repeated			

PIPERADE

PIPERADE trap

Double Penning Trap

Magnetic field 7T, 2 homogeneous regions (<1ppm over 1cm³ volume)

Two traps in one :

- 1. Purification trap : large inner radius (>10⁴ ions/bunch)
- 2. Measurement trap : ion stacking/ mass measurements

P. Ascher et al., PIPERADE: A double Penning trap for mass separation and mass spectrometry at DESIR/SPIRAL2, published end of 2021 (NIM A)

PIPERADE trap

Double Penning Trap

Magnetic field 7T, homogeneous (<1ppm over 1cm³ volume) Ion confined :

- radially : magnetic field
- longitudinal : electrostatic quadrupolar field

Confinement leads to 3 cumulated eigen motions :

Purification Trap

Measurement Trap

1

0

Extraction electrodes

magnetron+axial magnetron+axial+cyclotron magnetron+cyclotron

B

PIPERADE trap - Principle

First Penning Trap

- central « ring » electrode 8-fold segmented

<u>Two types of excitation applied :</u>

- Dipolar @ magnetron freq. : *change the magnetron radius* \leftarrow *almost* **mass independent**
- Quadrupolar @ cyclotron freq. : *conversion magnetron/cyclotron* \leftarrow **mass dependent**

Helium gas ← axial and modified cyclotron motion damped by collisions with gas

PIPERADE trap - Principle

First Penning Trap

- central « ring » electrode 8-fold segmented
- cyclotron excitation <mass dependent
- buffer gas cooling

lon of interest : centered Contaminants : off-center

=> Ejection through the diaphragm to complete the selection

First Penning Trap

- first ion trapping ← September 2020

 - first magnetron excitation seen – March 2021 measured frequency ~660 Hz calculated frequency → 669 Hz

lons out of the

First Penning Trap

- first ion trapping ← September 2020
- first magnetron excitation seen March 2021 (660 Hz)
- first cyclotron excitation applied April 2021 buffer gas cooling recentering of ³⁹K ions – 2.75283 MHz

First Penning Trap

31

- first ion trapping ← September 2020
- first magnetron excitation seen March 2021 (660 Hz)
- first cyclotron excitation applied April 2021 buffer gas cooling recentering of ³⁹K ions (2.75 MHz)
- 3 other species found during a 'massive day' no more species found due to the GPIB selectivity

First Penning Trap

- first ion trapping ← September 2020
- first magnetron excitation seen March 2021 (660 Hz)
 first cyclotron excitation applied April 2021 buffer gas cooling recentering of ³⁹K ions (2.75 MHz)
- 3 other species found during a 'massive day' no more species found due to the GPIB selectivity
- transfer and trapping in the second trap (Accumulation/Measurement Trap)
- apply excitations in the Accumulation/Measurement Trap + extraction

First Penning Trap

- first ion trapping ← September 2020
- first magnetron excitation seen March 2021 (660 Hz)
 first cyclotron excitation applied April 2021 buffer gas cooling recentering of ³⁹K ions (2.75 MHz)
- 3 other species found during a 'massive day' no more species found due to the GPIB selectivity
- transfer and trapping in the second trap (Accumulation/Measurement Trap)
- apply excitations in the Accumulation/Measurement Trap + extraction
- first ToF-ICR resonance

→ meas. Time-of-flight of the ions

THANK YOU

Permanent physicists

P. Ascher, B. Blank, M.Gerbaux, S. Grévy

Instrumentation

P. Alfaurt, L. Daudin, B. Lachacinski

Mechanics ('BE') S. Perard

PhDs

M. Flayol, M. Hukkanen

Postdocs

D. Atanasov, A. Husson

Courtesy: Mathias GERBAUX

THANK YOU

Permanent physicists

P. Ascher, B. Blank, M.Gerbaux, S. Grévy

Instrumentation

P. Alfaurt, L. Daudin, B. Lachacinski

Mechanics ('BE') S. Perard

PhDs

M. Flayol, M. Hukkanen

Postdocs

D. Atanasov, A. Husson