Status & first results of GPIB & PIPERADE beamline

Audric HUSSON, LP2i Bordeaux, GANIL Community Meeting 2022,
Connection to SPIRAL1
- Dedicated to beam purification and preparation
Context

- Dedicated to beam purification and preparation
At LP2i Bordeaux

FEBIAD source
Produce alkaline
(surface ionization)
Main species – 39K
+ other alkalines

Acceleration : 30keV
At LP2i Bordeaux

FEBIAD source
Produce alkaline (surface ionization)
Main species – 39K
+ other alkalines

Acceleration: 30keV

GPIB Cooler-Buncher
RFQ trap filled with He gas
- cooling via gas interaction
- bunching

29.9 kV
FEBIAD source
Produce alkaline
(surface ionization)
Main species – 39K
+ other alkalines
Acceleration : 30keV

GPIB Cooler-Buncher
RFQ trap filled with He gas
- cooling via gas interaction
- bunching

L3keV line
90° electrostatic deflector
- new alkaline source
- new detectors
 (emittancemeter)

At LP2i Bordeaux

29.9 kV
27 kV /0V

GCM 2022, Caen
At LP2i Bordeaux

FEBIAD source
Produce alkaline (surface ionization)
Main species – 39K
+ other alkalines

Acceleration: 30keV

GPIB Cooler-Buncher
RFQ trap filled with He gas
- cooling via gas interaction
- bunching

L3keV line
90° electrostatic deflector
- new alkaline source
- new detectors
(emittancemeter)

PIPERADE double Penning trap
- 7T superconducting magnet
- beam purification
- mass measurement

At LP2i Bordeaux

GCM 2022, Caen
GPIB Cooler-Buncher

GPIB in the Hall de Montage before installation on the PIPERADE beamline
RadioFrequency Quadrupole trap
(linear Paul trap)

Ion confined:
- radially: RF oscillating potential
 (saddle shape potential)
- longitudinal: arbitrary potential slope
 potential well at the extraction

Objectives:
- Cool down the ion beam
 emittance reduction down to
 10\(\pi\) mm.mrad @ 3keV
 4.5\(\pi\) mm.mrad @ 30keV
- Make bunches/packets of ions with
 specific characteristics
 bunch length < 1\(\mu\)s
 energy spread < 1eV

M. Gerbaux et al., The General Purpose Ion Buncher: a radiofrequency quadrupole cooler-buncher for DESIR at SPIRAL2, 2022 (NIM), accepted
RadioFrequency Quadrupole trap
(linear Paul trap)

Two operation modes:
- continuous beam (CW)
 → transmission
 → (later) emittance – spot size / divergence
GPIB Cooler-Buncher

RadioFrequency Quadrupole trap (linear Paul trap)

Two operation modes:
- continuous beam (CW)
 - transmission
 - (later) emittance – spot size / divergence
- bunch(ing) mode
 - bunch length
 - energy spread
RadioFrequency Quadrupole trap (linear Paul trap)

Two operation modes:
- continuous beam (CW)
 → transmission
 → (later) emittance – spot size / divergence
- bunch(ing) mode
 → bunch length
 → energy spread

Detectors:
- Faraday cup → beam current
- MCP (micro-channel plate) + retarding grid
 → detect bunch profile over time
 → scan the energy
 → longitudinal emittance
GPIB Cooler-Buncher - MCP + Retarding grid

Electroformed Ni/Nickel mesh, *Transmission 10 %*

- Cie : 10 %
- Image : 13.6 %
- Measure : 11.8 %

Micro-beam scan

ALFIRA facility, LP2I Bordeaux
GPIB Cooler-Buncher - MCP + Retarding grid

- Biased mesh
- Collection plate
- Grounded grid
- MCP plate

Ion beam

Graph showing count/s (x0.83), count/bunch, fit curve, 1st derivative - absolute values. Data points for μ: 3436.0 V and σ: 9.70 V.
GPIB Cooler-Buncher - MCP + Retarding grid

- Biased mesh
- Collection plate
- Grounded grid
- MCP plate

Energy

Time

f(E)

TOF
GPIB Cooler-Buncher - MCP + Retarding grid

energy

time

T_{OF}

E
GPIB Cooler-Buncher – First results

CW mode:
Intensity up to 10^{10} pps (~1nA)
Transmission with K^+ ions:
- **80% @ 30 keV**
- Routinely **70-75 % @ 3 keV**

Record transmission obtained after careful tuning - **92% @ 3 keV**

Bunch mode:
Rep. Rate: 1 – 100 Hz

Measured bunch length:
- Extraction 30keV: ~ **1-2 µs FWHM**
- Extraction 3keV: **0.7 µs FWHM**

→ Extraction potential to be optimized for bunch compression
GPIB Cooler-Buncher – First results

CW mode:
- Intensity up to 10^8 pps (~20 pA)
- Transmission:
 - $80\% @ 30 \text{ keV}$
 - $92\% @ 3 \text{ keV}$

Bunch mode:
- Rep. Rate: 1 – 100 Hz
- Measured bunch length:
 - Extraction 30 keV: ~ 1-2 µs FWHM
 - Extraction 3 keV: 0.7 µs FWHM

→ Extraction potential to be optimized for bunch compression

Technical limitation in the energy spread measurement:
- $6 \text{ eV for 10 ms cooling}$

→ Cooling sequence/time to be optimized
→ Technical developments required
90° electrostatic deflector

L3-keV line
90° electrostatic deflector
- new alkaline source
- new detectors
 (emittancemeter)
90° electrostatic deflector

Test bench for the 90° electrostatic deflector

- Characterize the 90° deflector

- CW mode:
 - Energy measurement – Faraday cup
 - Transverse emittance measurement → optimization & characterization of an emittance-meter for GPIB

- Bunch mode:
 - Test the transmission measurement with a low number of ions,
 - Optimize the energy dispersion measurement,
 - Guarantee feasibility of TOF/energy measurement over all intensity range

High intensity (>10⁴ evts) → CF with trans-impedance FEMTO
Low intensity (<1000 evts) → MCP

Properties with medium intensity hard to evaluate ???
90° electrostatic deflector

Test bench for the 90° electrostatic deflector

Rubidium source
- source CC unders EPICS ✔️
 – upgrade to Phoebus made on the testbench
- beam properties measured, still problem with the energy
 * intensity ✔️
 * beam spot size ✔️
 * energy dispersion ✗
- bunch delivery implemented & tested: bunch down to 250ns ✔️
 – CC EPICS ✔️
- Pantechnik pepper-pot emittance-meter modified to be EPICS compatible ✔️

X position [pxl]

Y position [pxl]
GPIB summary

Extraction

<table>
<thead>
<tr>
<th>30 keV</th>
<th>CW beam</th>
<th>Bunched beam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transmission</td>
<td>Transverse emittance</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>> 93%</td>
<td>estimation: ~3π mm.mrad</td>
<td>to be repeated</td>
</tr>
</tbody>
</table>

3 keV

<table>
<thead>
<tr>
<th>CW beam</th>
<th>Bunched beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>Transverse emittance</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>70 - 80%</td>
<td>coming soon</td>
</tr>
</tbody>
</table>

TOF distribution

- Low = low intensity
- High = high intensity
- (10^8 ions/bunch or CW 100pA)

Notes
- Need further developments
- HRS coupling?
- RF limit
PIPERADE

- double Penning trap
- 7T superconducting magnet
- beam purification
- mass measurement

29.9 kV
PIPERADE trap

Double Penning Trap
Magnetic field 7T, 2 homogeneous regions (<1ppm over 1cm³ volume)

Two traps in one:

1. **Purification trap**: large inner radius (>10⁴ ions/bunch)
2. **Measurement trap**: ion stacking/mass measurements

P. Ascher et al., PIPERADE: A double Penning trap for mass separation and mass spectrometry at DESIR/SPRAL2, published end of 2021 (NIM A)
PIPERADE trap

Double Penning Trap

Magnetic field 7T, homogeneous (<1ppm over 1cm³ volume)

Ion confined:
- radially: magnetic field
- longitudinally: electrostatic quadrupolar field

Confinement leads to 3 cumulated eigen motions:

1. Axial motion
 - along the optical axis
 - ~100 kHz
 - \[\omega_z = \sqrt{\frac{qU}{md^2}} \]

2. Reduced cyclotron motion
 - fast circular motion
 - ~ MHz
 - \[\omega_p = \frac{\omega_c}{2} \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}} \]

3. Magnetron motion
 - slow circular motion around trap axis
 - ~ kHz
 - \[\omega_m = \frac{\omega_c}{2} - \sqrt{\frac{\omega_c^2}{4} - \frac{\omega_z^2}{2}} \]
PIPERADE trap - Principle

First Penning Trap
- central « ring » electrode 8-fold segmented

Two types of excitation applied:

- Dipolar @ magnetron freq.: *change the magnetron radius ← almost mass independent*
- Quadrupolar @ cyclotron freq.: *conversion magnetron/cyclotron ← mass dependent*

Helium gas ← axial and modified cyclotron motion damped by collisions with gas
PIPERADE trap - Principle

First Penning Trap
- central « ring » electrode 8-fold segmented
- magnetron excitation ← mass independent
- cyclotron excitation ← mass dependent
- buffer gas cooling

→ now with multiple species
 (ion of interest + contaminants)

Ion of interest : centered
Contaminants : off-center

=> Ejection through the diaphragm to complete the selection

Helium gas ← axial and modified cyclotron motion damped by collisions with gas
Diaphragm
PIPERADE trap – First results

First Penning Trap
- first ion trapping ← September 2020
- first magnetron excitation seen – March 2021
 measured frequency ~660 Hz
 calculated frequency → 669 Hz

Ions out of the diaphragm - disappearance
PIPERADE trap – First results

First Penning Trap

- first ion trapping ← September 2020
- first magnetron excitation seen – March 2021 (660 Hz)
- first cyclotron excitation applied – April 2021
 buffer gas cooling recentering of 39K ions – 2.75283 MHz
PIPERADE trap – First results

First Penning Trap
- first ion trapping ← September 2020

- first magnetron excitation seen – March 2021 (660 Hz)
- first cyclotron excitation applied – April 2021
 buffer gas cooling recentering of 39K ions (2.75 MHz)

- 3 other species found during a ‘massive day’
 no more species found due to the GPIB selectivity
PIPERADE trap – First results

First Penning Trap
- first ion trapping ← September 2020

- first magnetron excitation seen – March 2021 (660 Hz)
- first cyclotron excitation applied – April 2021
 buffer gas cooling recentering of 39K ions (2.75 MHz)

- 3 other species found during a ‘massive day’
 no more species found due to the GPIB selectivity

- transfer and trapping in the second trap
 (Accumulation/Measurement Trap)

- apply excitations in the Accumulation/Measurement Trap + extraction
PIPERADE trap – First results

First Penning Trap
- first ion trapping ← September 2020
- first magnetron excitation seen – March 2021 (660 Hz)
- first cyclotron excitation applied – April 2021
 buffer gas cooling recentering of 39K ions (2.75 MHz)
- 3 other species found during a ‘massive day’
 no more species found due to the GPIB selectivity
- transfer and trapping in the second trap
 (Accumulation/Measurement Trap)
- apply excitations in the Accumulation/Measurement Trap + extraction
- first ToF-ICR resonance
 → meas. Time-of-flight of the ions

MCP
GCM 2022, Caen
Currently preparing a 2D sensitive detector to perform PI-ICR technique (Phase Imaging) – also a very good debugging device.
THANK YOU

Permanent physicists
P. Ascher, B. Blank, M. Gerbaux, S. Grévy

Instrumentation
P. Alfaurt, L. Daudin, B. Lachacinski

Mechanics (‘BE’)
S. Perard

PhDs
M. Flayol, M. Hukkanen

Postdocs
D. Atanasov, A. Husson
1. Injection of ions in the trap (motions damped)
2. Extraction of ions

Measurement of the trap center projection on detector

End of step 1

Extraction

Courtesy: Mathias GERBAUX
1. Injection of ions in the trap (motions damped)
2. Dipole excitation ω_1
3. Quadrupole excitation (π-pulse) at ω_Q
4. Extraction of ions

Measurement of reference position

End of step 3

Extraction

Courtesy: Mathias GERBAUX
Measurement of magnetron frequency

1. Injection of ions in the trap (motions damped)
2. Dipole excitation \(\omega_+ \)
3. Quadrupole excitation (\(\pi \)-pulse) at \(\omega_Q \)
4. Extraction of ions

Phase accumulation time

Step 4

Total phase accumulation: \(2\pi \times k_- + \phi_- \)

Courtesy: Mathias GERBAUX
Measurement of modified cyclotron frequency

1. Injection of ions in the trap (motions damped)
2. Dipole excitation ω_+
3. Quadrupole excitation (π-pulse) at ω_c
4. Extraction of ions

Phase accumulation time

Step 4

Total phase accumulation: $2\pi \times k_+ + \phi_+$

Courtesy: Mathias GERBAUX

GCM 2022, Caen
THANK YOU

Permanent physicists
P. Ascher, B. Blank, M. Gerbaux, S. Grévy

Instrumentation
P. Alfaurt, L. Daudin, B. Lachacinski

Mechanics (‘BE’)
S. Perard

PhDs
M. Flayol, M. Hukkanen

Postdocs
D. Atanasov, A. Husson